Patent Classification on Subgroup Level Using Balanced Winnow

  • Eva D’hondt
  • Suzan Verberne
  • Nelleke Oostdijk
  • Lou Boves
Chapter

Abstract

In the past decade research into automated patent classification has mainly focused on the higher levels of International Patent Classification (IPC) hierarchy. The patent community has expressed a need for more precise classification to better aid current pre-classification and retrieval efforts (Benzineb and Guyot, Current challenges in patent information retrieval. Springer, New York, pp 239–261, 2011). In this chapter we investigate the three main difficulties associated with automated classification on the lowest level in the IPC, i.e. subgroup level. In an effort to improve classification accuracy on this level, we (1) compare flat classification with a two-step hierarchical system which models the IPC hierarchy and (2) examine the impact of combining unigrams with PoS-filtered skipgrams on both the subclass and subgroup levels. We present experiments on English patent abstracts from the well-known WIPO-alpha benchmark data set, as well as from the more realistic CLEF-IP 2010 data set. We find that the flat and hierarchical classification approaches achieve similar performance on a small data set but that the latter is much more feasible under real-life conditions. Additionally, we find that combining unigram and skipgram features leads to similar and highly significant improvements in classification performance (over unigram-only features) on both the subclass and subgroup levels, but only if sufficient training data is available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benzineb K, Guyot J (2011) Automated patent classification. In: Current challenges in patent information retrieval. Springer, New York, pp 239–261Google Scholar
  2. 2.
    Cai L, Hofmann T (2004) Hierarchical document categorization with support vector machines. In: Proceedings of the thirteenth ACM international conference on information and knowledge management, CIKM ’04. ACM, New York, pp 78–87CrossRefGoogle Scholar
  3. 3.
    Cesa-Bianchi N, Gentile C, Zaniboni L (2006) Incremental algorithms for hierarchical classification. J Mach Learn Res 7:31–54MathSciNetMATHGoogle Scholar
  4. 4.
    Chen YL, Chang YC (2012) A three-phase method for patent classification. Inf Process Manag 48(6):1017–1030CrossRefGoogle Scholar
  5. 5.
    Daelemans W, Zavrel J, van der Sloot K, van den Bosch A (2010) TiMBL: Tilburg memory-based learner - version 6.3 - Reference GuideGoogle Scholar
  6. 6.
    D’hondt E, Verberne S, Weber N, Koster K, Boves L (2012) Using skipgrams and pos-based feature selection for patent classification. Comput Linguist Neth J 2:52–70Google Scholar
  7. 7.
    D’hondt E, Verberne S, Koster K, Boves L (2013) Text representations for patent classification. Comput Linguist 39(3):755–775CrossRefGoogle Scholar
  8. 8.
    D’hondt E, Verberne S, Oostdijk N, Beney J, Koster C, Boves L (2014) Dealing with temporal variation in patent categorization. Inf Retr. doi:10.1007s10791-014-9239-6Google Scholar
  9. 9.
    Dumais S, Chen H (2000) Hierarchical classification of web content. In: Proceedings of the 23rd annual international ACM SIGIR conference on research and development in information retrieval, SIGIR ’00. ACM, New York, pp 256–263CrossRefGoogle Scholar
  10. 10.
    Eisinger D, Tsatsaronis G, Bundschus M, Wieneke U, Schroeder M (2013) Automated patent categorization and guided patent search using IPC as inspired by MeSH and PubMed. J Biomed Semant 4(1):1–23CrossRefGoogle Scholar
  11. 11.
    Fall CJ, Benzineb K (2002) Literature survey: issues to be considered in the automatic classification of patents, pp 1–64Google Scholar
  12. 12.
    Fall CF, Benzineb K, Guyot J, Törcsvári A, Fiévet P (2003) Computer-assisted categorization of patent documents in the international patent classification. In: Proceedings of the international chemical information conferenceGoogle Scholar
  13. 13.
    Falquet G, Guyot J, Benzineb K (2010) myClass: a mature tool for patent classification. In: Multilingual and multimodal information access evaluation - proceedings international conference of the cross-language evaluation forum, CLEF 2010. Springer, BerlinGoogle Scholar
  14. 14.
    Guyot J, Benzineb K (2013) IPCCAT-report on a classification test. Tech. Rep., Simple Shift. srv1.olanto.org/download/myCLASS/publication/IPCCAT_Classification_at_Group_Level_20130712.pdf
  15. 15.
    King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9(2):137–163CrossRefGoogle Scholar
  16. 16.
    Koster CH, Beney J, Verberne S, Vogel M (2010) Phrase-based document categorization. Springer, New York, pp 263–286Google Scholar
  17. 17.
    Krier M, Zaccà F (2002) Automatic categorization applications at the European patent office. World Patent Inf 24(3):187–196CrossRefGoogle Scholar
  18. 18.
    Li Y, Bontcheva K, Cunningham H (2007) Svm based learning system for f-term patent classification. In: Proceedings of the 6th NTCIR workshop meeting on evaluation of information access technologies: information retrieval, question answering and cross-lingual information access (NTCIR’07), pp 396–402Google Scholar
  19. 19.
    Lin HT, Lin CJ, Weng RC (2007) A note on Platt’s probabilistic outputs for support vector machines. Mach Learn 68(3):267–276CrossRefGoogle Scholar
  20. 20.
    Oostdijk N, Verberne S, Koster C (2010) Constructing a broadcoverage lexicon for text mining in the patent domain. In: Proceedings of the international conference on language resources and evaluation, LREC 2010, 17–23 May 2010, Valletta, MaltaGoogle Scholar
  21. 21.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNetMATHGoogle Scholar
  22. 22.
    Piroi F, Lupu M, Hanbury A, Sexton AP, Magdy W, Filippov IV (2010) CLEF-IP 2010: retrieval experiments in the intellectual property domain. In: Proceedings of CLEF 2010 (notebook papers/labs/workshops)Google Scholar
  23. 23.
    Piroi F, Lupu M, Hanbury A, Zenz V (2011) CLEF-IP 2011: retrieval in the intellectual property domain. In: Petras V, Forner P, Clough PD (ed) Proceedings of CLEF 2011 (notebook papers/labs/workshop)Google Scholar
  24. 24.
    Platt J (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin classifiers. MIT Press, Cambridge, MA, pp 61–74Google Scholar
  25. 25.
    Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24:513–523CrossRefGoogle Scholar
  26. 26.
    Silla C, Freitas A (2011) A survey of hierarchical classification across different application domains. Data Min Knowl Disc 22(1–2):31–72MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Smith H (2002) Automation of patent classification. World Patent Inf 24(4):269–271CrossRefGoogle Scholar
  28. 28.
    Tikk D, Biró G, Törcsvári A (2007) A hierarchical online classifier for patent categorization. IGI Global, Information Science Reference, Hershey, pp 244–267Google Scholar
  29. 29.
    van Halteren H (2000) The detection of inconsistency in manually tagged text. In: Proceedings of LINC-00Google Scholar
  30. 30.
    Wang X, Zhao H, Lu BL (2011) Enhance top-down method with meta-classification for very large-scale hierarchical classification. In: Proceedings of the international joint conference on natural language processing, pp 1089–1097Google Scholar
  31. 31.
    Widodo A (2011) Clustering patent documents in the field of ICT (information and communication technology). In: Proceedings of 2011 international conference on semantic technology and information retrieval (STAIR), pp 203–208Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Eva D’hondt
    • 1
    • 2
  • Suzan Verberne
    • 1
  • Nelleke Oostdijk
    • 1
  • Lou Boves
    • 1
  1. 1.Radboud University NijmegenNijmegenThe Netherlands
  2. 2.Laboratoire d’Informatique pour la Mécanique et les Sciences de l’IngénieurOrsayFrance

Personalised recommendations