Visual Analysis of Patent Data Through Global Maps and Overlays

  • Luciano KayEmail author
  • Alan L. Porter
  • Jan Youtie
  • Nils Newman
  • Ismael Ràfols
Part of the The Information Retrieval Series book series (INRE, volume 37)


Visual analytics has been increasingly used to help to better grasp the complexity and evolution of scientific and technological activities over time, across science and technological areas and in organisations. This chapter presents general insights into some important fields of expertise such as mapping, network analysis and visual analytics applied to patent information retrieval and analysis. We also present a new global patent map and overlay technique and illustrative examples of its application. The concluding remarks offer considerations for future patent analysis and visualisation.


Visual analysis Global maps Overlay maps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kay L, Newman N, Youtie J, Porter AL, Rafols I (2014) Patent overlay mapping: visualizing technological distance. J Assoc Inf Sci Technol 65(12):2432–2443. doi: 10.1002/asi.23146 CrossRefGoogle Scholar
  2. 2.
    Rafols I, Porter AL, Leydesdorff L (2010) Science overlay maps: a newtool for research policy and library management. J Am Soc Inf Sci Technol 61(9):1871–1887CrossRefGoogle Scholar
  3. 3.
    Porter AL, Newman NC (2005) Patent profiling for competitive advantage: deducing who is doing what, where, and when. In: Moed JF, Glanzel W, Schmoch U (eds) Handbook of quantitative science and technology research. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  4. 4.
    Trippe A (2003) Patinformatics: tasks to tools. World Patent Inf 25:211–221CrossRefGoogle Scholar
  5. 5.
    Dunphy SM, Herbig PR, Howes ME (1996) The innovation funnel. Technol Forecast Social Change 53:279–292CrossRefGoogle Scholar
  6. 6.
    Souder WE (1987) Managing new product innovations. Lexington Books, New York, NYGoogle Scholar
  7. 7.
    Watts RJ, Porter AL (1997) Innovation forecasting. Technol Forecast Social Change 56:25–47CrossRefGoogle Scholar
  8. 8.
    Balconi M, Breschi S, Lissoni F (2004) Networks of inventors and the role of academia: an exploration of Italian patent data. Res Policy 33(1):127–145CrossRefGoogle Scholar
  9. 9.
    Schoen A, Villard L, Laurens P, Cointet J-P, Heimeriks G, Alkemade F (2012) The network structure of technological developments; Technological distance as a walk on the technology map. Presented at the STI Indicators Conference 2012, Montréal. Accessed 22 June 2013
  10. 10.
    Ernst H (2003) Patent information for strategic technology management. World Patent Inf 25(3):233–242CrossRefGoogle Scholar
  11. 11.
    Leydesdorff L, Kushnir D, Rafols I (2012) Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC). Scientometrics 1–17. doi: 10.1007/s11192-012-0923-2.
  12. 12.
    Leydesdorff L, Alkemade F, Heimeriks G, Hoekstra R (2015) Patents as instruments for exploring innovation dynamics: geographic and technological perspectives on “photovoltaic cells”. Scientometrics 102:629–651CrossRefGoogle Scholar
  13. 13.
    Chen C (2003) Mapping scientific frontiers: the quest for knowledge visualization. Springer, LondonCrossRefzbMATHGoogle Scholar
  14. 14.
    Boyack KW (2003) An indicator-based characterization of the Proceedings of the National Academy of Science. Paper presented at the NAS Sackler Colloquium on Mapping Knowledge DomainsGoogle Scholar
  15. 15.
    Archibugi D, Pianta M (1996) Measuring technological change through patents and innovation surveys. Technovation 16(9):451–468CrossRefGoogle Scholar
  16. 16.
    Huang Y, Ma J, Porter AL, Kwon S, Zhu D (2015) Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD) for brain cancer. J Nanotechnol 6:1666–1676Google Scholar
  17. 17.
    Hinze S, Reiss T, Schmoch U (1997) Statistical analysis on the distance between fields of technology. Paper presented at the Innovation Systems and European Integration (ISE), Targeted Socio-Economic Research Program, 4th Framework Program of the European Commission (DGXII), Karlsruhe, GermanyGoogle Scholar
  18. 18.
    Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two documents. J Am Soc Inf Sci Technol 24(4):265–269MathSciNetCrossRefGoogle Scholar
  19. 19.
    Klavans R, Boyack KW (2009) Toward a consensus map of science. J Am Soc Inf Sci Technol 60(3):455–476CrossRefGoogle Scholar
  20. 20.
    Bollen J, Van de Sompel H, Hagberg A, Bettencourt L, Chute R, Rodriguez MA et al (2009) Clickstream data yields high-resolution maps of science. PLoS One 4(3), e4803. doi: 10.1371/journal.pone.0004803 CrossRefGoogle Scholar
  21. 21.
    Boyack KW, Börner K, Klavans R (2009) Mapping the structure and evolution of chemistry research. Scientometrics 79(1):45–60CrossRefGoogle Scholar
  22. 22.
    Boyack KW, Klavans R, Börner K (2005) Mapping the backbone of science. Scientometrics 64:351–374CrossRefGoogle Scholar
  23. 23.
    Janssens F, Zhang L, Moor BD, Glänzel W (2009) Hybrid clustering for validation and improvement of subject-classification schemes. Inf Process Manag 45(6):683–702. doi: 10.1016/j.ipm.2009.06.003 CrossRefGoogle Scholar
  24. 24.
    Leydesdorff L, Rafols I (2009) A global map of science based on the ISI subject categories. J Am Soc Inf Sci Technol 60(2):348–362CrossRefGoogle Scholar
  25. 25.
    Moya-Anegón F, Vargas-Quesada B, Chinchilla-Rodríguez Z, Corera-Álvarez E, Herrero-Solana V (2007) Visualizing the marrow of science. J Am Soc Inf Sci Technol 58(14):2167–2179CrossRefGoogle Scholar
  26. 26.
    Moya-Anegon F, Vargas-Quesada B, Herrero-Solana V, Chinchilla-Rodriguez Z, Corera-Alvarez E, Munoz-Fernandez FJ (2004) A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics 61(1):129–145CrossRefGoogle Scholar
  27. 27.
    Rosvall M, Bergstrom CT (2010) Mapping change in large networks. PLoS One 5(1), e8694. doi: 10.1371/journal.pone.0008694 CrossRefGoogle Scholar
  28. 28.
    Van den Besselaar P, Leydesdorff L (1996) Mapping change in scientific specialties: a scientometric reconstruction of the development of artificial intelligence. J Am Soc Inf Sci Technol 46(6):415–436CrossRefGoogle Scholar
  29. 29.
    Breschi S, Lissoni F, Malerba F (2003) Knowledge-relatedness in firm technological diversification. Res Policy 32:69–87CrossRefGoogle Scholar
  30. 30.
    Jaffe A (1986) Technological opportunities and spillovers of R&D: evidence from firms’ patents, profits, and market value. Am Econ Rev 76(5):984–1001Google Scholar
  31. 31.
    Kauffman S, Lobo J, Macready WG (2000) Optimal search on a technology landscape. J Econ Behav Organ 43:141–166CrossRefGoogle Scholar
  32. 32.
    Rafols I, Leydesdorff L (2009) Content-based and algorithmic classifications of journals: perspectives on the dynamics of scientific communication and indexer effects. J Am Soc Inf Sci Technol 60(9):1823–1835CrossRefGoogle Scholar
  33. 33.
    Boyack KW, Klavans R (2008) Measuring science–technology interaction using rare inventor–author names. J Informet 2:173–182CrossRefGoogle Scholar
  34. 34.
    Olsson O (2004) Technological opportunity and growth. J Econ Growth 10(1):35–57zbMATHGoogle Scholar
  35. 35.
    Arthur WB (2010) The nature of technology. Penguin, LondonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Luciano Kay
    • 1
    Email author
  • Alan L. Porter
    • 2
  • Jan Youtie
    • 3
  • Nils Newman
    • 4
  • Ismael Ràfols
    • 5
    • 6
  1. 1.Center for Nanotechnology in Society (CNS) – ISBERUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.School of Public Policy, Georgia Institute of Technology, Atlanta GA & Search TechnologiesNorcrossUSA
  3. 3.Enterprise Innovation Institute & School of Public PolicyAtlantaUSA
  4. 4.Intelligent Information Services CorporationAtlantaUSA
  5. 5.Ingenio (CSIC-UPV)Universitat Politècnica de ValènciaValènciaSpain
  6. 6.SPRUUniversity of SussexBrightonUK

Personalised recommendations