Skip to main content

Spectral Reflectance of Soils

  • Chapter
  • First Online:
Remote Sensing of Soils

Abstract

The intimate knowledge of the spectral behaviour of soils is a key to their identification and characterization using remote sensing techniques. Nearly the entire shortwave solar radiation in the optical domain (from 300 to 2500 nm) incident on soil surface is either absorbed or reflected, and only a little of it is transmitted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla H., Minor E.C., Dias, R.F., Hatcher, PG (2010) Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and 13C-NMR. Geochim Cosmochim Acta 74:3815–3838. doi:10.1016/j.gca.2010.04.006.

  • Aber J., c. A. Wessman, D. L. Peterson, J. M. Mellilo, and J. H. Fownes, 1990. Remote sensing of litter and soil organic matter decomposition in forest ecosystems, in Remote Sensing of Biosphere Functioning, R. J. Hobbs and H. A. Mooney. yds., Springer-Verlag, New York, pp. 87–101.

    Google Scholar 

  • Al-Abbas, H. H., H. H. Swain, and M. F. Baumgardner, 1972. Relating organic matter and clay content to multispectral radiance of soils, Soils Sci., 114, 477–485.

    Google Scholar 

  • Barnes E., and Baker, M.S., 2000, Multispectral data for mapping soil texture: Possibilities and limitations. Appl. Eng. Agric. 16:731–741.

    Google Scholar 

  • Baumgardner, M. F., L.F. Silva, L.L. Biehl, and E. R. Stoner, 1985. Reflectance properties of soils, Adv. Agron, 38, 1–44.

    Google Scholar 

  • Baumgardner, M. F., S. J. Kristof, C. J. Johannsen, and A. L. Zachary, 1970. Effects of organic matter on multispectral properties of soils, Proc. Indian Acad. Sci., 79, 413–422.

    Google Scholar 

  • Beebe, K.R. 1998. Chemometrics: A practical guide. John Wiley & Sons Inc., New York, 26–52.

    Google Scholar 

  • Ben-Dor, E., Y. Inbar, and Y. Chen, 1997 The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400–2,500 nm) during a controlled decomposition process, Remote Sensing Environ. 61: 1–15.

    Google Scholar 

  • Ben-Dor, E., and A. Banin, 1995a. Near infrared analysis (NIRA) as a rapid method to simultaneously evaluate several soil properties, Soil Sci. Soc. Am. j., 59, 364–372.

    Google Scholar 

  • Ben-Dor, E, 2002. Quantitative remote sensing of soil properties. Advances in Agronomy. 75:173–243.

    Google Scholar 

  • Ben-Dor, E., Irons J.R., and EpEma, G., 1999. Soil reflectance. In “Remote Sensing for the Earth Sciences”(A.N. Rencz ed.) Manual of Remote Sensing, 3rd edition, Vol.3, pp 111–189, Wiley New York.

    Google Scholar 

  • Ben-Dor, E., Patkin, K, Banin, A, and Karnieli, A. 2002 Mapping of several soil properties using DAIS-7915 hyperspectral scanner data: A study over clayey soils in Israel. Int. J. Remote Sensing, 2002, vol. 23, no. 6, 1043–062.

    Google Scholar 

  • Berns, R. S., F. W. Billmeyer, and R. S. Sacher, 1985. Methods for generating spectral reflectance functions leading to color-constant properties, Color Res. Appl., 10, 73–83.

    Google Scholar 

  • Bhatti, A.U., D.J. Mulla, and B.E. Frazier, 1991. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and Thematic Mapper images, Remote Sensing Environ. 37: 181–191.

    Google Scholar 

  • Bialousz, S., 1978. Zastosowanie fotointerpretacji do wykonywania map stosunków wodnych gleb. PTG, Prace Komisji Naukowych 35: 1–143.

    Google Scholar 

  • Bowers, S., and R. J. Hanks, 1965. Reflectance of radiant energy from soils, Soil Sci., 100, 130–138.

    Google Scholar 

  • Brereton, R. G. (2003). Chemometrics. Data analysis for the laboratory and chemical plant, Wiley & Sons. Chichester.

    Google Scholar 

  • Brown, D.J., Shepherd, K.D., Walsh, M.G., Mays, M.D. and Reinsch, T.G. (2006): Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132, 273–290.

    Google Scholar 

  • Cariati, F., L. Erre, G. Micera, P. Piu, and C. Gessa, 1981. Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy, Clays Clay Miner., 29, 157–159.

    Google Scholar 

  • Cariati, F., L. Erre, G. Micera, P. Piu, and C. Gessa, 1983. Polarization of water molecules in phyllosylicates in relation to exchange cations as studied by near infrared spectroscopy, Clays Clay Miner., 31, 155–157.

    Google Scholar 

  • Chen, F. David E. Kissel, Larry T. West, and Wayne, A. 2000. Field-Scale Mapping of Surface Soil Organic Carbon Using Remotely Sensed Imagery. Soil Sci. Soc. Am. J. 64:746–753 (2000).

    Google Scholar 

  • Cierniewski, J., and Courault, D. 1993. Bidirectional reflectance of bare soil surface in the visible and near-infrared range. Remote Sensing Reviews, 7, 321–339.

    Google Scholar 

  • Clark R. N., 1981. The reflectance of water-mineral mixtures at low temperatures, J. Geophysics. Res., 86, 3074–3086.

    Google Scholar 

  • Clark, R. N., G. A. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B. Dalton, R. R. McDougal, and C. A. Gent (2003), Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, Journal of Geophysical Research, 108(5), 44.

    Google Scholar 

  • Coleman, T.L., and O.L. Montgomery, 1987. Soil organic matter content and iron content: effect the spectral characteristics of Vertisols and Alfisols in Alabama Photogrammtric Engineering and Remote Sensing, 53:1659–1663.

    Google Scholar 

  • Coleman, T.L., P.A. Agbu, O.L. Montgomery, T. Gao, and S. Prasad. 1991. Spectral band selection for quantifying selected properties in highly weathered soils. Soil Sci. 151:355–361.

    Google Scholar 

  • Coleman, T.L.; P.A. Agbu.; O.L Montgomery; T. Gao, and S. Prasad, 1991, Spectral band selection for quantifying selected properties in highly weathered soils. Soil Science. 151(5):355–361.

    Google Scholar 

  • Condit, H. R., 1970. The spectral reflectance of American soils, Photogramm. Eng.,. 36, 955–966.

    Google Scholar 

  • Coulson, K. L., 1966. Effects of reflection properties of natural surfaces,]. Appl. jMeteorol. 10, 1285–1295.

    Google Scholar 

  • Coulson, K. L. and Reynolds, D. W. 1971. The spectral reflectance of natural surfaces. Journal of Applied Meteorology, 10: 1285–1295.

    Google Scholar 

  • Csillag F., L. Pasztor, and L. L. Biehl, 1993. Spectral band selection for the characterization of salinity status of soils, Remote Sensing Environ. 43, 231–242.

    Google Scholar 

  • Curi, N. and Franzmeier, D.P. 1984. Toposequence of Oxisols from the Central Plateau of Brazil. Soil Sci. Soc. Am. J., 48: 341–346.

    Google Scholar 

  • D’Acqui, L.P., Pucci, A., Janik, L.J., (2010) Soil properties prediction of western Mediterranean islands with similar climatic environments by means of mid-infrared diffuse reflectance spectroscopy. European Journal of Soil Science Volume 61, Issue 6, pages 865–876, December 2010.

    Google Scholar 

  • Da Costa, L. M., 1979. Surface soil color and reflectance as related to physicochemical and mineralogical soil properties, Ph.D. dissertation, University of Missouri, Columbia, Mo, 154 pp.

    Google Scholar 

  • Dalal, R. c., and R. J. Henry, 1986. Simultaneous determination of moisture, organic carbon and total nitrogen by near infrared reflectance spectroscopy, Soil Sci. Joc. Am. J., 50, 120–123.

    Google Scholar 

  • Daniel, K.W., N.K. Tripathi, K. Honda. 2003. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop BuriThaland. Australian Journal of Soil Research 41(1): 47–59.

    Google Scholar 

  • Demyan, M.S., Rasche, F., Schulz, E., Breulmann, M., Muller, T., Cadisch, G., (2012) Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. European Journal of Soil Science 63(2), 189–199.

    Google Scholar 

  • Du Changwen and Jianmin Zhou, 2009. Evaluation of soil fertility using infrared spectroscopy: a review Environ Chem Lett (2009) 7:97–113.

    Google Scholar 

  • Du, C., Linker, R., Shaviv, A., 2007. Characterization of soils using photoacoustic mid-infrared spectroscopy. Applied Spectroscopy 61, 1063–1067.

    Google Scholar 

  • Du, C., Ma Fei, Lu Yuzhen, and Zhou Jianmin, 2015 Chapter-6 Soil Fertility Assessed by infrared spectroscopy. DOI:10.1201/b18759-7.

  • Escadafal, R., 1989. Characterisation de la surface des sols arides par observations de terrain et par teledetection. Applications: exemple dela region de Tataouine J. Tunisie), Ph.D. dissertation, Universite Pierre et Marie Curie, Paris, 317 pp.

    Google Scholar 

  • Escadafal, R., 1993. Remote sensing of soil color: principles and applications, Remote Sensing Rev. 7, 261–279.

    Google Scholar 

  • Etzion, Y. R. Linker, U. Cogan, I. Shmulevich, 2004. Determination of Protein Concentration in Raw Milk by Mid-Infrared Fourier Transform Infrared/Attenuated Total Reflectance Spectroscopy. Journal of Dairy Science. 87(9):2779–2788.

    Google Scholar 

  • Fernandez, R. N., and D. G. Schulze, 1987. Calculation ~ f soil color from reflectance spectra, Soil Sci. Am.]. 51, 1277–1282.

    Google Scholar 

  • Ferrari, E., Francioso, O., Nardi, S., Saladini, M., DalFerro, N., Morari, F., 2011. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers. Journal of Molecular Structure 998(1–3), 216–224.

    Google Scholar 

  • Fidêncio, P.H., R.J. Poppi, J.C. Andrade. 2002. Determination of organic matter in soil using near-infrared spectroscopy and partial least squares regression. Communication in Soil Science and Plant Analysis 33:1607–1615.

    Google Scholar 

  • Frazier, B. E., and Y. Cheng, 1989. Remote sensing of soils in the eastern Palouse region with Landsat thematic mapper, Remote Sensing Environ., 28, 317–325.

    Google Scholar 

  • Frazier, B. E. and Jarvis, C. R. 1990. “A Landsat‐TM ratio transformation to show soil variation”. In Agronomy Abstracts, Vol. 291, Madison, Wisconsin, USA: American Society of Agronomy.

    Google Scholar 

  • Goetz, A. F. H., and M. Herring, 1989. A high resolution imaging spectrometer. _ (J:;HRIS) for EOS, IEEE Trans. Geosci. Remote Sensing, 27, 136–144.

    Google Scholar 

  • Grove C. I., S. J. Hook, and E. D. Paylor, 1992. Laboratory Reflectance Spectra of 160 Minerals, 0.4 to 2.5 Micrometers, JPL Publ. 92–2, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif.

    Google Scholar 

  • Gupta, R.P., 2003, Remote Sensing Geology. Springer.

    Google Scholar 

  • Hall, A. J., 1941. The relation between color and chemical composition in the biotites, Am. Miner., 26, 29–33.

    Google Scholar 

  • Hapke, B. W. 1981a. Bidirectional reflectance spectroscopy: I. Theory, J. Ceophys. Res., 86, 3039–30) 4.

    Google Scholar 

  • Hapke, B. W., 1981b. Bidirectional reflectance spectroscopy: 2. Experiments and observation, J. Ceophys. Res., 86, 3055–3060.

    Google Scholar 

  • Hapke, B. W., 1984. Bidirectional reflectance spectroscopy: correction for macroscopic roughens, Icarus, 59, 41–59.

    Google Scholar 

  • Hapke, B. W., 1993. Theory of Reflectance and Emittance Spectroscopy Cambridge University Press, New York.

    Google Scholar 

  • Hoffer, R. M. ,1976, Spectral reflectance characteristics of earth surface feautures. In Fundamentals of Remote Sensing. Minicourse Series, Purdue University, WestLafayette, Indiana, USA. Mulders, M. A. 1987. Remote Sensing in Soil Science, Amsterdam: Elsevier.

    Google Scholar 

  • Hunt G. R., and J. W. Salisbury, 1970. Visible and near infrared spectra of minerals}md rocks: I. Silicate minerals, Mod. Geol., 1, 283–300.

    Google Scholar 

  • Hunt, G. R., 1980. Spectroscopic properties of rock and minerals in Handbook of Physical Properties of Rocks, C. R. Stewart, ed., CRC Press, Boca Raton, Fla., 295 pp.

    Google Scholar 

  • Hunt, G. R. and Salisbury, J. W., 1971. Visible and near-infrared spectra of minerals and rocks: II. Carbonates. Modern Geology, 2:1–10.

    Google Scholar 

  • Henderson, T.L., Baumgardner, M.F., Franzmeier, D.P., Stott, D.E., Coster, D.C., 1992. High dimensional reflectance analysis of soil organic matter. Soil Sci. Soc. Am. J. 56, 865–872.

    Google Scholar 

  • Hick, R.T., and Russell, W.G.R. 1990. Some spectral considerations for remote sensing of soil salinity. Australian Journal of Soil Research 28: 417–431.

    Google Scholar 

  • Hiraishi, J., 1991: Fourier Transform Infrared Spectroscopy. First edition. Tokyo, Japan Scientific Societies Press, 1991, p. 176.

    Google Scholar 

  • Irons,’J. R., R. A. Weismiller, and G. W. Petersen, 1989. Soil reflectance, in Theory and Application of Optical Remote Sensing, G. Asrar, ed., Wiley Ser. in Remote Sensing, Wiley, New York, pp. 66–106.

    Google Scholar 

  • Jackson, R. D., S. Moran, P. N. Slater, and S. F. Biggar, 1987. Field calibration of reflectance panels, Remote Sensing Environ, 22, 145–158.

    Google Scholar 

  • Jacquemoud, S., F. Baret, and J. F. Hanocq, 1992. Modeling spectral and bidirectional soil reflectance, Remote Sensing Environ., 41, 123–132.

    Google Scholar 

  • Jahn, B. R.; Linker, R.; Upadhyaya, S. K.; Shaviv, A.; Slaughter, D. C. & Shmulevich, I. (2006). Mid-infrared spectroscopic determination of soil nitrate content. Biosystems Engineering 944: 505–515.

    Google Scholar 

  • Janik et al.,1995; Janik, L.J., Skjemstad, J.O., Raven, M.D., 1995. Characterization and analysis of soils using mid-infrared partial least-squares. I. Correlations with XRF-determined major element composition. Australian Journal Soil Research 33, 621–636.

    Google Scholar 

  • Janik, L. J., J. O. Skjemstad. 1995. Characterization and analysis of soils using midinfrared partial least-squares. 2. correlations with some laboratory data. Australian Journal of Soil Research 33(40): 637–650.

    Google Scholar 

  • Jepson, W. B., 1988. Structural iron in kaolinites and in associated ancillary minerals: in Iron in Soil and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., Reidel, Dordrecht, 467–536.

    Google Scholar 

  • Jepson B., 1988a. Structural iron in kaolinites and in associated ancillary minerals Pp 467–529 in: Iron in Soil and Clay Minerals (J.W. Stucki B.A. Goodman & U Schwertman, editors). Reidel, Dordrecht.

    Google Scholar 

  • Jepson, W. B., 1988b. Structural iron in kaolinites and in associated ancillary minerals, in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., NATO ASI Ser. D. Reidel, Dordrecht, The Netherlands, pp. 467–536.

    Google Scholar 

  • Karmanova, L. A., 1981. Effect of various iron compounds on the spectral reflectance and color of soils, Sov. Soil Sci., 13, 63–6.0.

    Google Scholar 

  • Kondratyev, K. Y., and P. P. Fedchenko, 1983. Investigation of humus in soil from/heir colours, Sov. Soil Sci. 15, 108–111.

    Google Scholar 

  • Krishnan, P., Alexander, J.D., Bulter, B.J., and Hummerl, J.W. 1980. Reflectance technique for predicting soil organic matter. Soil Science Society of American Journal 44: 1282–1285.

    Google Scholar 

  • Kubelka, P., F. Munk. 1931. Einbeitragzuroptik der farbanstriche. ZeitschriftfürtechnischePhysik12: 593–601.

    Google Scholar 

  • Lagacherie P., Frédéric B., Feret J.-B., Netto, J.M. & Robbez-Mass Obbez-Masson J.M., 2008. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment no. 3, pp. 825–835, 2008.

    Google Scholar 

  • Latz, K. R.A. Weismiller, G.E. Van Scoyoc and M.F. Baumgardner, 1984. Characteristic Variations in Spectral Reflectance of Selected Eroded Alfisols. Soil Science Soc. America J.48(5):1130–1134.

    Google Scholar 

  • Leger, R G., G. J. F. Millette, and S. Chomchan, 1979. The effects of organic matter, iron’ oxides and moisture on the color of two agricultural soils of Quebec, Can. j. Soil Sci. 59, 191–202.

    Google Scholar 

  • Liang S., and R. G. Townshend, 1996. A modified Hapke model for soil bidirectional reflectance, Remote Sensing ‘Environ. 55, 1–10.

    Google Scholar 

  • Mattikalli, N.M. 1997. Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements.- in: Remote Sensing of Environment, 59: 14–28.

    Google Scholar 

  • McKeague, J. A., J. H. Day, and J. A. Shields, 1971. Evaluation relationships among soil properties by computer analysis, Can. j. Soil Sci., 51, 105–111.

    Google Scholar 

  • Miller, C. E. 2001. Chemical principles of near-infrared technology. In ‘‘Near-Infrared Technology in the Agricultural and Food Industries’’ (P. Williams and K. Norris, Eds.), pp. 19–37. The American Association of Cereal Chemists Inc., St. Paul, MN.

    Google Scholar 

  • Milton, E. J., Schaepman, M. E., Anderson, K., Kneubuhler, M. & FOX, N. 2009. Progress in field spectroscopy. Remote Sensing of Environment, 113, S92–S109.

    Google Scholar 

  • Morra, M. J., M. H. Hall, and L. L. Freeborn, 1991. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy, Soil Sci. Soc. Am. j., 55, 288–291.

    Google Scholar 

  • Mouazen, A.M., B. Kuang, J. De Baerdemaeker, H. Ramon. 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 158: 23–31.

    Google Scholar 

  • Mulders, M. A., 1987. Remote Sensing in Soil Science, Dev. Soil Sci. 15, Elsevier, Amsterdam, 379 pp.

    Google Scholar 

  • Nguyen, T. T.; Janik, L. J. and Raupach, M., 1991. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies. Australian Journal of Soil Research 29:49–67.

    Google Scholar 

  • Nicodemus, F.E., Ricmond, J.C., Hsia, J.J., Jimsberg, I.W. and Limperis, T.1977. Geometrical considerations and nomenclature for reflectance. U.S. Government Printing office, Washington, D.C.

    Google Scholar 

  • Obukhov, A.I. and D. C. Orlov, 1964. Spectral reflectance of the major soil groups and the possibility of using diffuse reflection in soil investigations, Sou. Soil Sci., 2, 174–184.

    Google Scholar 

  • Orna, M. V., 1978. The chemical origins of color, J. Chem. Ed., 55, 478–484.

    Google Scholar 

  • Palmer, J. M. 1982. Field standards of reflectance, Photogramm. Eng. Remote Sensing, 48, 1623–1625.

    Google Scholar 

  • Penndorf, R.,1956. Colours of natural objects. Journal of the Optical Society of AmericaVol. 46, https://www.osapublishing.org/josa/issue.cfm?volume=46&issue=3 Issue 3,pp. 180-182(1956) https://doi.org/10.1364/JOSA.46.000180.

  • Pinty B., M. M. Verstraete, and R. E. Dickson, 1989. A physical model for prediction of bidirectional reflectance over bare soil, Remote Sensing Environ., 27, 273–288.

    Google Scholar 

  • Price, J. C. (1991). On the value of high spectral resolution measurements in the visible and near-infrared. In “Proceedings of the 5th International Colloquium, Physical Measurements and Signatures in Remote Sensing,” Vol. I, pp. 131–136. Courchevel, France.

    Google Scholar 

  • Rao, B.R.M., Ravi Sankar, T., Dwivedi, R.S., Thammappa, S.S., Venkataratnam, L., Sharma, R.C., and Das, S.N. 1995. Spectral behaviour of salt-affected soils. International Journal of Remote Sensing 16(12): 2125–2136.

    Google Scholar 

  • Reeves III, J. B. (2010). Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma 158: 3–14.

    Google Scholar 

  • Salisbury, J. W., D’Aria, D. M., 1992. Infrared (8–14micron) remote sensing of soil particle size,. Remote sensing of Environment,42(2):157–165.

    Google Scholar 

  • Schreier, H., 1977. FILL NAME Proceedings of the 4th Canadian Symposium on Remote Sensing, Vol. 1, pp. 106–112.

    Google Scholar 

  • Schreier, H., R. Wiart, and S. Smith, 1988. Quantifying organic matter degradation in agricultural fields using PC-based image analysis, J. Soil and Water Conserv, 421–424.

    Google Scholar 

  • Schwertmann, U., 1988. Occurrence and formation of iron oxides in various pedo-environments, in Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., NATO ASI Ser., D. Reidel, Dordrecht, The Nether-lands, pp. 267–308.

    Google Scholar 

  • Shepherd, K.D., M. Walsh. 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal 66: 988–998.

    Google Scholar 

  • Stoner, E. R., M. F. Baumgardner, L. L. Biehl, and B. F. Robinson, 1980 Atlas of Soil Reflectance Properties, Res. Bull. 962, Agricultural Experiment Station, Purdue University, West Lafayette, Ind.

    Google Scholar 

  • Stoner, E. R. and Baumgardner, M. F. 1980a. “Physicochemical, site, and bi‐directional reflectance factor characteristics of uniformly moist soils, Laboratory for Applications of Remote Sensing”. In Technical Report 111679, West Lafayette, Indiana, USA: Purdue University.

    Google Scholar 

  • Suliman,, A.S., and Post, D.F., 1988. Relationship between soil spectral properties and sand, silt, and clay content of the soils on the University of Arizona Maricopa Agricultural Centre, Proceedings of Hydrology and Water Resources in Arizona and Southwest, 16 April 1988, Tucson,

    Google Scholar 

  • Swain, P.H. and Davis, S.M. (ed.)1978, Remote Sensing: The Quantitative Approach. Mc-Graw Hill, New York.

    Google Scholar 

  • Tasumi, M.: Basics and Practical Applications of FT-IR. First edition. Tokyo, Tokyo Kagaku Dojin, 1986, p. 124.

    Google Scholar 

  • Taylor, R. M., 1982. Colour in soils and sediments: a review, Dev Sedimentol., 35, 749–761.

    Google Scholar 

  • Tinti, A. Tugnoli, V. Bonora, S. and Francioso, O. 2015. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review. Journal of Central European Agriculture, 2015, 16(1), p. 1–22 DOI:10.5513/JCEA01/16.1.1535.

  • Tkachuk, R. and Law, D.P., 1978. Near infrared diffuse reflectance standards. Cereal Chemistry, 55(6):981–995.

    Google Scholar 

  • Torrent, J., U. Schwertmann, H. Fitchter, F. Alferez, 1983. Quantitative relationships between soil colour and hematite content Soil Science 136(6):354–358.

    Google Scholar 

  • Viscarra Rossel, R. A. and Lark, R. M. (2009). Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. European Journal of Soil Science 60: 453–464.

    Google Scholar 

  • Viscarra Rossel, R.A., 2007. Robust modelling of soil diffuse reflectance spectra by bagging-partial least squares regression. Journal of Near Infrared Spectroscopy 15, 39–47.

    Google Scholar 

  • Viscarra Rossel, R.A., Behrens, T., 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54.

    Google Scholar 

  • Vonogradov, B. V., 1981. Remote sensing of the humus content of soils, Sov. Soil Sci., 11, 114–123.

    Google Scholar 

  • Weindner, V. R., and J. J. Hsia, 1981. Reflection properties of pressed polytetrafluor-oethylene powder. Opt. Soc. Am., 71, 856–862.

    Google Scholar 

  • White, J.L., and C. B. Roth, 1986. Infrared spectrometry, in Methods of Soil Analysis, Part 1, 2nd ed., A. Klute, ed. Agronomy, 9, 291–330.

    Google Scholar 

  • Whitlock, C.H., Stuart R. LeCroy, and Robert, J.W.,1994. Narrowband Angular Reflectance Properties of the Alkali Flats at White Sands, New Mexico. Remote Sensing of Environment 50(2):171–181.

    Google Scholar 

  • Young, E. R, K. C. Clark, R. B. Bennett, and T. L. Houk, 1980. Measurements and parameterization of the bidirectional reflectance feature of BaS04 paint, Appl. Opt., 19(20), 3500–3505.

    Google Scholar 

  • Younis. M. T., Gilabert M. A., Melia, J., and Bastida, J., 1997 Weathering process/effects on spectral reflectance of rocks in assume-arid environment. International Journal of Remote sensing 18:3361–3377.

    Google Scholar 

  • URL https://www.researchgate.net/publication/200458942_Soil_Reflectance.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar Dwivedi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Dwivedi, R.S. (2017). Spectral Reflectance of Soils. In: Remote Sensing of Soils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53740-4_6

Download citation

Publish with us

Policies and ethics