Skip to main content

Digital Image Processing

  • Chapter
  • First Online:
Book cover Remote Sensing of Soils

Abstract

An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of any pair of coordinates (x, y) is called the intensity or gray level of the image at that point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldus Corporation. 1988. An Aldus/Microsoft technical memorandum: 8/8/88 (TIFF version 4.0), http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt.

  • Bezdek, J., Ehrlich, R. and Full, W. (1984), ‘FCM: The fuzzy c-means clustering algorithm’, by the Covariance Matrix Method. Photogrammetric Engineering and Remote Sensing, 47, pp. 1469–1476.

    Google Scholar 

  • Bryant, J. D, 1979. On the clustering of multi-dimensional pictorial data. Proc. of the conference on Earth Resources and Remote Sensing Vol. 1 and 2; p 647–659. July 01, 1979. Texas, USA.

    Google Scholar 

  • Bryceson, K. P. 1989. “The use of Landsat MSS data to determine the distribution of locust egg beds in the River in a region of New South Wales, Australia.” International Journal of Remote Sensing. 10:1749–1762.

    Google Scholar 

  • Campbell, J.B. and Wynne, R.H., 2011. Introduction to Remote Sensing. 4th edn. The Guillford Press, New York, London.

    Google Scholar 

  • Carper, W. J., T. W. Lilesand, and R. W. Kieffer. 1990. “The use of intensity–hue–saturation transformation for merging SPOT panchromatic and multispectral image data.” Photogrammetric Engineering and Remote Sensing. 56(4):459–467.

    Google Scholar 

  • Chavez, P. S. 1975. Atmospheric, Solar, and M.T.F. Corrections for ERTS Digital Imagery. Proceedings, American Society of Photogrammetry. Bethesda, MD: American Society for Photogrammetry and Remote Sensing, pp. 69–69.

    Google Scholar 

  • CompuServe. 1987. Graphics Interchange Format: A standard defining a mechanism for the storage and transmission of raster-based graphics information. Computers & Geosciences 10, 191–203.

    Google Scholar 

  • Congalton, R.G. and Green, K, 1999: Assessing the Accuracy of Remote Sensing Data: Principles and Practices. Roca Baton, Lewis.

    Google Scholar 

  • Daubechies, I. (1992), Ten Lectures on Wavelets volume 61 of CMBS-NSF Regional Conference Series in Applied Mathematics (Philadelphia: Society for Industrial and Applied Mathematics (S.I.A.M.)): pp 1–16.

    Google Scholar 

  • Davenport, T., and M. Vellon. 1987. Tag Image File Format (Rev 4.0), http://www.martinreddy.net/gfx/2d/TIFF-4.txt.

  • Foody, D.M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(2002): 185–201.

    Google Scholar 

  • Fulton, W. 2008. A few scanning tips, http://www.scantips.com.

  • Gao. J., 2009. Digital Image Analysis of Remotely Sensed Imagery. The McGraw-Hill Companies, Inc.

    Google Scholar 

  • Gonzalez, R. C., and R. E. Woods. 1992. Digital Image Processing. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Gonzalez, R. C. and Woods, R. E. 2002. Digital Image Processing. Prentice-Hall, Inc. Upper Saddle River, New Jersey.

    Google Scholar 

  • Gurney C. and J. Townshend, 1983. “The Use of Contextual Information in the Classification of by the Covariance Matrix Method”. Photogrammetric Engineering and Remote Sensing, 47, pp. 1469–1476.

    Google Scholar 

  • Hallada, W.A. and S. Cox, “Image sharpening for mixed spatial and spectral resolution satellite systems,” Proc. of the 17th International Symposium on Remote Sensing of Environment, 9–13 May, pages 1023–1032, 1983.

    Google Scholar 

  • Hemmleb, M., and A. Wiedemann. 1997. “Digital rectification and generation of orthoimages in architectural photogrammetry.” CIPA International Symposium, IAPRS, XXXII, Part 5C1B: 261–267, International Archives of Photogrammetry and Remote Sensing, Göteborg, Sweden.

    Google Scholar 

  • Holben B.N.,1986. Characteristics of maximum-value composite images for temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1435–1445. doi:10.1080/01431168608948945.

  • Jabari, S. and Zhang, Yun, 2013. Very High Resolution Satellite Image Classification Using Fuzzy Rule-Based Systems. Algorithms 2013, 6, 762–781; doi:10.3390/a6040762.

  • Jensen, John, R. 2007, Remote sensing of the environment-An earth resources perspective. Prentice Hall, New Jersey.

    Google Scholar 

  • Kauth, R. J., and G. Thomas. 1976. “The tasseled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat.” In Proceedings of the Symposium on Machine Processing of Remotely-Sensed Data 1976, ed. A., 4B: 41–51. West Lafayette, IN: Purdue University.

    Google Scholar 

  • Lawrence, R.L., and A. Wright, “Rule-Based Classification Systems Using Classification and Regression Tree (CART) Analysis,” Photogrammetric Engineering and Remote Sensing, 67(10), 2001, pp. 1137–1142.

    Google Scholar 

  • Levin, N. (Ed.), 1999. Fundamentals of Remote Sensing. E-book, November 1999.

    Google Scholar 

  • Lillesand, T.M. and Kiefer, R.W., 1994. Remote Sensing and Image Interpretation. 3rd edn. Wiley, New York.

    Google Scholar 

  • Lillesand, T.M., Kiefer, R. W. and Chipman, J.W., 2004 Remote Sensing and Image Interpretation.- New York: John Willey and Sons. 1987. 721 pp.

    Google Scholar 

  • Lillesand, T.M., Kiefer, R.W. and Chipman, J.W., 2008. Remote sensing and image interpretation. John Wiley and Sons, Inc.

    Google Scholar 

  • Mallat, S.G., 1989. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattem Analysis and Machine Intelligence. 11, 1989, pp. 674–693.

    Google Scholar 

  • Mather, P. M. 2004. Computer Processing of Remotely-Sensed Images: An Introduction (3rd ed.). Chichester, England: John Wiley & Sons.

    Google Scholar 

  • Musy, R.F. R.H. Wynne, C.E. Blinn, J.A. Scrivani, and R.E. McRoberts, “Automated Forest Area Estimation via Iterative Guided Spectral Class Rejection,” Photogrammetric Engineering & Remote Sensing, vol. 72, no. 8, pp. 949–960, 2006.

    Google Scholar 

  • Nikolakopoulos, K.G., 2008. Comparison of nine fusion techniques for very high resolution data. Photogrammetric Engineering & Remote Sensing 74(5), May 2008, pp. 647–659.

    Google Scholar 

  • Phillips, R.D. A probabilistic classification algorithm with soft classification output, Ph.D. Thesis, Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2009.

    Google Scholar 

  • Purkis, S. and Klemas, V., 2011. Remote Sensing and Global Environmental Change. Willey-Blackwell (www.wiley-blackwell).

  • Ranchin, T., L. Wald, and M. Mangolini, 1996. The ARSIS method: a general solution for improving spatial resolution of images by the means of sensor fusion. In: Proceedings of the conference “Fusion of Earth data: merging point measurements, raster maps and remotely sensed images”, Cannes, France, February 6–8, 1996, T. Ranchin and L. Wald Editors, published by SEE/URISCA, Nice, France, pp. 53–58.

    Google Scholar 

  • Ranchin, T., L. Wald, and M. Mangolini (2001), Improving the spatial resolution of images by means of sensor fusion. A general solution: the ARSIS method. In: Remote Sensing and Urban Analysis. J. P. Donnay and M. Barnsley (eds), Taylor and Francis, Great Britain: pp 19–34.

    Google Scholar 

  • Rast, M., Jaskolla, M., and Aranson, F. K., 1991, Comparative digital analysis of Seasat-SAR and Landsat-TM data for Iceland. International Journal of Remote Sensing,12, 527±544.

    Google Scholar 

  • Remotely Sensed Data,” Photogrammetric Engineering and Remote Sensing, 49(1) 55–64.

    Google Scholar 

  • Richards, J. A., and X. Jia. 2006. Remote Sensing Digital Image Analysis: An Introduction (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Richards, J.A., 2013. Remote Sensing Digital Image Analysis. Springer.

    Google Scholar 

  • Ritter, N and Ruth, M. 1997. The GeoTiff data interchange standard for raster geographic images. International Journal of Remote Sensing 18(7):1637–1647.

    Google Scholar 

  • Sabins, F.F., 2000. Remote Sensing: Principles and interpretation. W.H. Freeman & Co. New York.

    Google Scholar 

  • Swain, P. H., and Davis S. M. 1978. Remote Sensing: The Quantitative Approach. New York: McGraw-Hill, 396 pp.

    Google Scholar 

  • Swain, P. H., S. B. Vardeman, and J. C. Tilton. 1981. Contextual classification of multispectral image data, Pattern Recognition, 13: 429–441.

    Google Scholar 

  • Switzer, P., W. S. Kowalick, and R. J. P. Lyon. 1981. Estimation of Atmospheric Path-Radiance.

    Google Scholar 

  • Vermote, E. F., D. Tanré, J. L. Deuzé, M. Herman, and J.-J. Morcrette. 1997. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S. IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, pp. 675–686.

    Google Scholar 

  • Wayman, J.P., et al, 2001. Landsat TM-Based Forest Area Estimation Using Iterative Guided Spectral Class Rejection, Photogrammetric Engineering and Remote Sensing 67(10), 2001, pp. 1155–1166.

    Google Scholar 

  • Zanin, P.R. and Vieira, C.A.O., 2012. The positional and thematic accuracy for analysis of multi-temporal satellite images on mangrove areas. Proc. 10th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Florianopolis-SC, Brazil, July 10–13, 2012.

    Google Scholar 

  • Zha, Y., J. Gao, S. X. Ni, Y. Liu, J. Jiang, and Y. Wei. 2003. A spectral reflectance based approach to quantification of grassland cover from Landsat TM imagery. Remote Sensing of Environment. 87(2–3):371–375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar Dwivedi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Dwivedi, R.S. (2017). Digital Image Processing. In: Remote Sensing of Soils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53740-4_3

Download citation

Publish with us

Policies and ethics