Advertisement

Lignin: A Platform for Renewable Aromatic Polymeric Materials

  • Jairo H. LoraEmail author
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Lignin is the most abundant renewable aromatic material on Earth and is a logical link in the sustainable supply chain of the chemicals and materials that today we derive mostly from fossil-based benzene. In this chapter, we review lignin’s industrial sources and the recent progress in developing polymeric materials that use lignin as a macromonomer, polymer blend, functional additive, and precursor for advanced carbon materials. Several high-purity lignin production facilities were installed recently at pulp mills in three continents. Additional lignin availability is expected as second generation biofuel biorefineries realize that it makes sense to add value beyond the energy content of the lignin-rich residues that they generate. In the last decade, many lignin applications have seen significant progress, including lignin use in thermoset resins, polyurethanes, polyesters, polymer blends, elastomers, smart memory materials, antioxidants, functional packaging, electrically conductive materials for energy storage, coatings, advanced carbon materials, engineering plastics, ingredients for inks and varnishes, UV light blockers, coatings, compostable plastics, foams, rubber products, insulation, sealants, fiber composites, etc. Several of the applications highlighted here have already entered commercialization, while many others are expected to do so within the next few years. Increasing lignin use will result in environmental benefits and products with reduced carbon footprint. Application to lignin of emerging technologies may open new routes for lignin valorization in the near future.

Keywords

Lignin Lignin producers Lignin applications Thermoset resins Elastomers Polymer blends Macromonomer Bioaromatics Antioxidants UV blockers Carbon materials Flame retardants Smart memory materials Energy storage materials 

References

  1. 1.
  2. 2.
    Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties, Chapter 9. In: Belgacem M, Gandini A (eds) Monomers, polymers and composites from renewable materials. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Lora JH (2008) Industrial commercial lignins: sources, properties and applications, Chapter 10. In: Belgacem M, Gandini A (eds) Monomers, Polymers and Composites from Renewable Materials. Elsevier, AmsterdamGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Lora JH, Wayman M (1978) Delignification of hardwoods by autohydrolysis and extraction. Tappi 61(6):47–50Google Scholar
  8. 8.
    Pye EK (2006) Industrial lignin production and applications, Chapter 5. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products. Status quo and future directions. 2006 Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  9. 9.
    Pye EK, Lora JH (1991) The Alcell Process: a proven alternative to kraft pulping. Tappi J 74(3):113–118Google Scholar
  10. 10.
    http://www.chempolis.com/. Accessed 14 May 2016
  11. 11.
  12. 12.
    http://www.leafresources.com.au/. Accessed 14 May 2016
  13. 13.
    Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157CrossRefGoogle Scholar
  14. 14.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: Towards biobased polymers. Progr Polym Sci 39(7):1266–1290CrossRefGoogle Scholar
  15. 15.
    Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1/2):39–48CrossRefGoogle Scholar
  16. 16.
    Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XY (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200Google Scholar
  17. 17.
    Gargulak JD, Lebo SE (1999) Commercial use of lignin-based materials, Chapter 15. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological and materials perspectives. ACS Symposium Series 742, American Chemical Society, Washington, DCGoogle Scholar
  18. 18.
    Bullock J, Krapp M, Siemensmeyer K (2003) Aqueous colorant preparation for inkjet printing. US Patent Application 2003/0193554 A1Google Scholar
  19. 19.
    Zhor J, Bremner TW, Lora JH (1994) Effect of chemical characteristics of Alcell® lignin based methylsulphonates on their performance as water-reducing admixtures. In: Proceedings fourth Canmet-ACI international conference on superplasticizers and other chemical admixtures in concrete, MontrealGoogle Scholar
  20. 20.
  21. 21.
    Borgfeldt MJ (1964) Anionic bituminous emulsions. US Patent 3,123,569Google Scholar
  22. 22.
    Suchanec RR (1997) Asphalt emulsion with lignin containing emulsifier. US Patent 5683497Google Scholar
  23. 23.
    Suchanec RR (1997) Lignin-containing resinous compositions. US Patent 5,656,733Google Scholar
  24. 24.
    Suchanec RR (1997) Air entrained concrete with lignin-containing air entraining agent. US Patent 5,702,521Google Scholar
  25. 25.
    Kalliola A, Vehmas T, Liitiä T, Tamminen T (2015) Alkali-O2 oxidized lignin—a bio-based concrete plasticizer. Ind Crops Prod 74:150–157CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Bourzac K (2015) Inner workings: paving with plants. In: Proceedings national academy of sciences, September 22, vol. 112, no. 38, pp 11743–11744Google Scholar
  28. 28.
    Williams RC, Brown RC, Tang S (2014) Asphalt materials containing bio-oil and methods for production thereof. US8696806 B2Google Scholar
  29. 29.
    Williams RC, Raouf MA, Metwally M, Brown RC (2015) Bio-oil formulation as an asphalt substitute. US Patent 9200161 B2Google Scholar
  30. 30.
    Gandini A, Belgacem MN (2008) Lignins as components of macromolecular materials, Chapter 11. In: Belgacem M, Gandini A (eds) Monomers, polymers and composites from renewable materials. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Podschun J, Stücker A, Saake B, Lehnen R (2015) Structure–function relationships in the phenolation of lignins from different sources. ACS Sustain Chem Eng 3(10):2526–2532CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Wang D-Q, Wang X-M, Feng M, Brunette G (2014) Process for fungal modification of lignin and preparing wood adhesives with the modified lignin and wood composites made from such adhesives. US Patent Application 2014/0163142 A1Google Scholar
  33. 33.
    Zhang Y, Wang D-Q, Wang X-M, Feng M, He G (2015) Fungus-modified lignin and its use in wood adhesive for manufacturing wood composites. For Prod J 65(1–2):43–47Google Scholar
  34. 34.
    Lian H, Hong S, Carranza A, Mota-Morales JD, Pojman JA (2015) Processing of lignin in urea–zinc chloride deep-eutectic solvent and its use as a filler in a phenol-formaldehyde resin. RSC Adv 5(36):28778–28785CrossRefGoogle Scholar
  35. 35.
    Senyo WC, Creamer AW, Wu CF, Lora JH (1996) The use of organosolv lignin to reduce press vent formaldehyde emissions in the manufacture of wood composites. For Prod J 46(6):73–77Google Scholar
  36. 36.
    Khan MA, Lora JH (2006) Protobind 1075—an indigenous economical and eco-friendly renewable raw material for the plywood industry. Ply Gazette pp 68–77Google Scholar
  37. 37.
    Lora JH, Wu Q (2007) Performance of two non-wood soda lignin derivatives in oriented strand board powder phenolic adhesives. In: Proceedings 8th International Lignin Institute Forum, RomeGoogle Scholar
  38. 38.
  39. 39.
    Bode D, Wilson P, Craun GP (2015) Lignin based coating compositions. US Patent Application 2015/0344737 A1Google Scholar
  40. 40.
    Bernardini J, Anguillesi I, Coltelli M-B, Cinelli P, Lazzeri A (2015) Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polym Int 64:1235–1244CrossRefGoogle Scholar
  41. 41.
    Bernardini J, Cinelli P, Anguillesi I, Coltelli M-B, Lazzeri A (2015) Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur Polym J 64:147–156CrossRefGoogle Scholar
  42. 42.
    Ton TTM (1996) Cardanol–lignin-based polyurethanes. Polym Int 41:13–16CrossRefGoogle Scholar
  43. 43.
    Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 14:3295–3303CrossRefGoogle Scholar
  44. 44.
    Saito T, Perkins JH, Jackson DC, Trammel NE, Hunt MA, Naskar AK (2013) Development of lignin-based polyurethane thermoplastics. RSC Adv 3:21832CrossRefGoogle Scholar
  45. 45.
    Griffini G, Passoni V, Suriano R, Levi M, Turri S (2015) Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustain Chem Eng 3(6):1145–1154CrossRefGoogle Scholar
  46. 46.
    Hatakeyama H (2002) Polyurethanes containing lignin. In: Hu TQ (ed) Chemical modification, properties and usage of lignin. Kluwer Academic/Plenum Publishers, New York, pp 41–56CrossRefGoogle Scholar
  47. 47.
    Kurple KR (2000) Lignin based polyols. US Patent 6025452Google Scholar
  48. 48.
    Bowman MP, Conley CA, Schwendeman IG, Hibbert MM (2015) Polyester polymers comprising lignin. US Patent Application 2015/0197667 A1Google Scholar
  49. 49.
    Phanopoulos C, Vanden Ecker JMV (1998) Process for binding lignocellulosic material. US Patent 5,750,201Google Scholar
  50. 50.
    Zhang C, Wu H, Kessler MR (2015) High bio-content polyurethane composites with urethane modified lignin as filler. Polymer 69:52–57CrossRefGoogle Scholar
  51. 51.
    Chauhan M, Gupta M, Singh B, Singh AK, Gupta VK (2014) Effect of functionalized lignin on the properties of lignin–isocyanate prepolymer blends and composites. Eur Polym J 52:32–43CrossRefGoogle Scholar
  52. 52.
    Gupta M, Chauhan M, Naseeba Khatoon N, Singh B (2010) Studies on biocomposites based on pine needles and isocyanate. Adhes J Biobased Mater Bioenergy 4:353–362CrossRefGoogle Scholar
  53. 53.
    Faruk O, Sain M, Farnood R, Pan Y, Xiao H (2014) Development of lignin and nanocellulose enhanced Bio PU foams for automotive parts. J Polym Environ 22:279–288CrossRefGoogle Scholar
  54. 54.
    de Oliveira W, Glasser WG (1994) Multiphase materials with lignin. 11. Starlike copolymers with caprolactone. Macromolecules 27(1):5–11CrossRefGoogle Scholar
  55. 55.
    Hatakeyama T, Izuta Y, Hirose S, Hatakeyama H (2002) Phase transitions of lignin based caprolactones and their polyurethanes derivatives. Polymer 43:1177–1182CrossRefGoogle Scholar
  56. 56.
    Laurichesse S, Avérous L (2013) Synthesis, thermal properties, rheological and mechanical behaviors of lignins-grafted-poly (ε-caprolactone). Polymer 54(15):3882–3890CrossRefGoogle Scholar
  57. 57.
    Pérez-Camargo RA, Saenz G, Laurichesse S, Casas MT, Puiggalí J, Avérous L, Müller AJ (2015) Nucleation, crystallization, and thermal fractionation of poly (ε-caprolactone)-grafted-lignin: effects of grafted chains length and lignin content. J Polym Sci, Part B: Polym Phys 53(24):1736–1750CrossRefGoogle Scholar
  58. 58.
    Liu X, Wang J, Li S, Zhuang X, Xu Y, Wang C, Fuxiang C (2014) Preparation and properties of UV-absorbent lignin graft copolymer films from lignocellulosic butanol residue. Ind Crops Prod 52:633–641CrossRefGoogle Scholar
  59. 59.
    Sivasankarapillai G, McDonald AG (2011) Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems. Biomass Bioenergy 35:919–931CrossRefGoogle Scholar
  60. 60.
    Sivasankarapillai G, McDonald AG, Li H (2012) Lignin valorization by forming toughened lignin-co-polymers: development of hyperbranched prepolymers for cross-linking. Biomass Bioenergy 47:99–108CrossRefGoogle Scholar
  61. 61.
    Li H, Sivasankarapillai G, McDonald AG (2015) Lignin valorization by forming toughened thermally stimulated shape memory copolymeric elastomers: evaluation of different fractionated industrial lignins. J Appl Polym Sci 132(5):41389–41400Google Scholar
  62. 62.
    Li H, Sivasankarapillai G, McDonald AG (2014) Lignin valorization by forming thermally stimulated shape memory copolymeric elastomers—partially crystalline hyperbranched polymer as crosslinks. J Appl Polym Sci 131(22):41103–41112Google Scholar
  63. 63.
    Sivasankarapillai G, Li H, McDonald AG (2015) Lignin-based triple shape memory polymers. Biomacromolecules 16:2735–2742CrossRefGoogle Scholar
  64. 64.
    Li H, Sivasankarapillai G, McDonald AG (2015) Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer. Ind Crops Prod 67:143–154CrossRefGoogle Scholar
  65. 65.
    Stiubianu G, Cazacu M, Cristea M, Vlad A (2009) Polysiloxane-lignin composites. J Appl Polym Sci 113:2313–2321CrossRefGoogle Scholar
  66. 66.
    Stiubianu G, Nistor A, Vlad A, Cazacu M (2011) Modification of water sorption capacity of polydimethylsiloxane based composites by incorporation of lignin. Materiale Plastice 48(4):289–294Google Scholar
  67. 67.
    Zhang J, Cheng Y, Sewell P, Brook MA (2015) Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem 17:1811–1819CrossRefGoogle Scholar
  68. 68.
    Zhang J, Fleury E, Brook MA (2015) Foamed lignin–silicone bio-composites by extrusion and then compression molding. Green Chem 17(9):4647–4656CrossRefGoogle Scholar
  69. 69.
    Viswanathan T (2001) Conducting compositions of matter. US Patent 6299800 B1Google Scholar
  70. 70.
    Viswanathan T (2005) Synthesis of lignosulfonic acid-doped polyaniline using transition metal ion catalysts. US Patent 6,977,050 B1Google Scholar
  71. 71.
    Viswanathan T (2007) Corrosion prevention of cold rolled steel using water dispersible lignosulfonic acid doped polyaniline. US Patent 7,179,404 B1Google Scholar
  72. 72.
    Viswanathan T (2005) Catalytic effects of transition metal ions in the synthesis of polyaniline grafted lignosulfonic acid. US 6,916,900 B1Google Scholar
  73. 73.
    Berry BC, Viswanathan T (2002) Lignosulfonic acid-doped polyaniline (Ligno-Pani)—a versatile conducting polymer. In: Hu TQ (ed) Chemical modification, properties and usage of lignin. Kluwer Academic/Plenum Publishers, New York, pp 21–40CrossRefGoogle Scholar
  74. 74.
    Taylor KK, Cole CV, Soora R, Dilday JC, Hill AM, Berry B, Viswanathan T (2008) The use of lignosulfonic acid in the synthesis of water-dispersible polyaniline. J Appl Polym Sci 108:1496–1500CrossRefGoogle Scholar
  75. 75.
    Horton SD (2010) Cathodic protection compounds. US Patent 7,794,626 B2Google Scholar
  76. 76.
    Viswanathan T (2005) Corrosion prevention of cold rolled steel using water dispersible lignosulfonic acid doped polyaniline. US Patent 6,972,098 B1Google Scholar
  77. 77.
    Mishra S, Yu RCU, Post RL, Horgan AM, Grabowski EF, Carmichael KM, Parikh SR, Hsieh BR, VonHoene DC (2006) Imageable seamed belts with lignin sulfonic acid doped polyaniline. US Patent 7,031,647 B2Google Scholar
  78. 78.
    Visnawathan T (2006) Lignosulfonic acid-doped polyaniline composites with carbon allotropes. US Patent 7,063,808 B1Google Scholar
  79. 79.
  80. 80.
    Milkzarek G, Inganäs O (2012) Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335:1468–1471CrossRefGoogle Scholar
  81. 81.
    Milczarek G, Nowicki M (2013) Carbon nanotubes/kraft lignin composite: characterization and charge storage properties. Mater Res Bull 48:4032–4038CrossRefGoogle Scholar
  82. 82.
    Argyropoulos DS, Sadeghifar H, Cui C, Sen S (2013) Synthesis and characterization of poly(arylene ether sulfone) kraft lignin heat stable copolymers. ACS Sustain Chem Eng 2:264–271CrossRefGoogle Scholar
  83. 83.
    Mohapatra N, Noirot PA, Magrez M (2015) Printing ink or overprint varnish with renewable binder component. US Patent application 2015/0000559 A1Google Scholar
  84. 84.
    Kessler MR, Xia Y, Caes B, Rivas MJ, Bergman J (2015) Nitrated lignin ester and process of making the same. US Patent application 20150126716Google Scholar
  85. 85.
    Belgacem MN, Blayo A, Gandini A (2003) Organosolv lignin as a filler in inks, varnishes and paints. Ind Crops Prod 18:145–153CrossRefGoogle Scholar
  86. 86.
    Mandavgane SA, Gogte BB, Subramanian D (2007) Sulphonated lignin based screen ink formulations. Indian J Chem Technol 14:321–324Google Scholar
  87. 87.
    Feldman D (2002) Lignin and its polyblends. In: Hu TQ (ed) Chemical modification, properties and usage of lignin. Kluwer Academic/Plenum Publishers, New York, pp 81–99CrossRefGoogle Scholar
  88. 88.
    Sasaki M, Wanaka H, Takagi S, Tamura C Asada, Nakamura Y (2013) Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Ind Crops Prod 43:757–761CrossRefGoogle Scholar
  89. 89.
    Salanti A, Zoia L, Orlandi M (2016) Chemical modifications of lignin for the preparation of macromers containing cyclic carbonates. Green Chem 18:4063–4072Google Scholar
  90. 90.
    Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46(10):3771–3792CrossRefGoogle Scholar
  91. 91.
    Kumar MNS, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. J Biobased Mater Bioenergy 3:1–24CrossRefGoogle Scholar
  92. 92.
    Doherty W, Mousavioun P, Fellows C (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):259–276CrossRefGoogle Scholar
  93. 93.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRefGoogle Scholar
  94. 94.
    Pouteau C, Baumberger S, Cathala B, Dole P (2004) Lignin–polymer blends: evaluation of compatibility by image analysis. C R Biol 327:935–943CrossRefGoogle Scholar
  95. 95.
    Kadla JF, Kubo S (2004) Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Compos Part A 35:395–400CrossRefGoogle Scholar
  96. 96.
    Kadla JF, Kubo S (2003) Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin. Macromolecules 36:7803–7811CrossRefGoogle Scholar
  97. 97.
    Kubo S, Kadla JF (2005) Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci 98:1437–1444CrossRefGoogle Scholar
  98. 98.
    Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37:6904–6911CrossRefGoogle Scholar
  99. 99.
    Erdmann J, Ganster J, Engelmann G (2016) Thermoplastic polymer compounds with low molecular lignins, method for the production thereof, moulded articles and also uses. US patent application 2016/0002467 A10Google Scholar
  100. 100.
    Nair SS, Sharma S, Pu Y, Sun Q, Pan S, Zhu SY, Deng Y, Ragauskas AJ (2014) High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends. ChemSusChem 7:3513–3520CrossRefGoogle Scholar
  101. 101.
    Toriz G, Denes F, Young RA (2002) Lignin-polypropylene composites. Part 1: composites from unmodified lignin and polypropylene. Polym Compos 23(5):806–813CrossRefGoogle Scholar
  102. 102.
    Alexy P, Kosikova B, Crkonova G, Gregorova A, Martis P (2004) Modification of lignin-polyethylene blends with high lignin content using ethylene-vinylacetate copolymer as modifier. J Appl Polym Sci 94:1855–1860CrossRefGoogle Scholar
  103. 103.
    Samal SK, Fernandes EG, Corti A, Chiellini E (2014) Bio-based polyethylene-lignin composites containing a pro-oxidant/pro-degradant additive: preparation and characterization. J Polym Environ 22:58–68CrossRefGoogle Scholar
  104. 104.
    Shi B, Shlepr M (2016) “Thermoplastic films containing lignin and their optical polarization properties. J Polym Eng 36:521–528Google Scholar
  105. 105.
    Nitz H, Semke H, Landers R, Mulhaupt R (2001) Reactive extrusion of polycaprolactone compounds containing wood flour and lignin. J Appl Polym Sci 81:1972–1984CrossRefGoogle Scholar
  106. 106.
    Feldman D, Banu D, Campanelli J, Zhu H (2001) Blends of vinylic copolymer with plasticized lignin: thermal and mechanical properties. J Appl Polym Sci 81:861–874CrossRefGoogle Scholar
  107. 107.
    Li Y, Sarkanen S (2002) Alkylated kraft lignin-based thermoplastic blends with aliphatic polyesters. Macromolecules 35:9707–9715CrossRefGoogle Scholar
  108. 108.
    Li Y, Sarkanen S (2005) Miscible blends of kraft lignin derivatives with low-Tg polymers. Macromolecules 38:2296–2306CrossRefGoogle Scholar
  109. 109.
    Rosu L, Cascaval CN, Rosu D (2009) Effect of UV radiation on some polymeric networks based on vinyl ester resin and modified lignin. Polym Testing 28:296–300CrossRefGoogle Scholar
  110. 110.
    Thielemans W, Wool RP (2004) Butyrated kraft lignin as compatibilizing agent for natural fiber reinforced thermoset composites. Composites A 35:327–338CrossRefGoogle Scholar
  111. 111.
    Zhong M, Dai H, Yao H, Dai D, Zhou Y, Yang J, Chen F (2011) Strong, flexible high-lignin polypropylene blends. Polym Res Online. doi: 10.2417/spepro.003642 Google Scholar
  112. 112.
    Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31:4369–4379CrossRefGoogle Scholar
  113. 113.
    Acha BA, Marcovich NE, Reboredo MM (2009) Lignin in jute fabric-polypropylene composites. J Appl Polym Sci 113:1480–1487CrossRefGoogle Scholar
  114. 114.
    Maldhure AV, Ekhe JD, Deenadayalan E (2012) Mechanical properties of polypropylene blended with esterified and alkylated lignin. J Appl Polym Sci 125:1701–1712CrossRefGoogle Scholar
  115. 115.
    Mariotti N, Wang X-M, Rodrigue D, Stevanovic T (2014) Combination of esterified kraft lignin and MAPE as coupling agent for bark/HDPE composites. J Mater Sci Res 3(2):8–22Google Scholar
  116. 116.
    Teramoto Y, Lee SH, Endo T (2009) Phase structure and mechanical property of blends of organosolv lignin alkyl esters with poly(-caprolactone). Polym J 41:219–227CrossRefGoogle Scholar
  117. 117.
    Maldure AV, Chaudhari AR, Ekhe JD (2011) Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J Therm Anal Calorim 103:625–632CrossRefGoogle Scholar
  118. 118.
    Chen F, Dai H, Dong X, Yang J, Zhong MP (2011) Physical properties of lignin-based polypropylene blends. Polym Compos 32:1019–1025Google Scholar
  119. 119.
    Nemoto T, Konishi G, Tojo Y, An YC, Funaoka M (2012) Functionalization of lignin: Synthesis of lignophenol-graft-poly(2-ethyl-2-oxazoline) and its application to polymer blends with commodity polymers. J Appl Polym Sci 123:2636–2642CrossRefGoogle Scholar
  120. 120.
    Bono P, Lambert C (1994) Degradable plastics film including lignin as active vegetable filler. US Patent 5,321,065Google Scholar
  121. 121.
    Bono P, Feldman D, Banu D, Lora JH (1995) Degradable polymer blends and polymer products. PCT Int Appl 95/34604Google Scholar
  122. 122.
    Navarrete J, Chapman AJ, Parikh CJ, Toomey RT (2002) Use of lignins in thermoplastics. US Patent 6,485,867 B1Google Scholar
  123. 123.
    Navarrete J (2005) Use of grass lignins in thermoplast ics. US Patent Application 2005/0058909 A1Google Scholar
  124. 124.
    Nitz H, Semke H, Mulhaupt R (2001) Influence of lignin type on the mechanical properties of lignin based compounds. Macromol Mater Eng 286:737–743CrossRefGoogle Scholar
  125. 125.
    Sallem-Idrissi N, Sclavons M, Debecker DP, Devaux J (2016) Miscible raw lignin/nylon 6 blends: Thermal and mechanical performances. J Appl Polym Sci 133(6):42963CrossRefGoogle Scholar
  126. 126.
    Canetti M, Bertini F (2007) Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites. Compos Sci Technol 67:3151–3157CrossRefGoogle Scholar
  127. 127.
    Gupta AK, Mohanty S, Nayak SK (2015) Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly (trimethylene terephthalate) hybrid nanocomposites. RSC Adv 5(69):56028–56036CrossRefGoogle Scholar
  128. 128.
    Cao N, Oden K, Glasser WG (2014) Chemical modification of lignin and lignin derivatives. US patent 8,809,426 B2Google Scholar
  129. 129.
    Cao N, Oden K, Glasser WG (2014) Chemical modification of lignin and lignin derivatives. US patent 8,865,802 B2Google Scholar
  130. 130.
    Cao N, Oden K (2014) Blending lignin with thermoplastic and a coupling agent or compatibilizer. US Patent Application 2014/ 0121307 A1Google Scholar
  131. 131.
    Cao N, Oden K (2014) Injection of a chemical reagent in a process stream that contains lignin. US Patent Application 2014/ 0121360 A1Google Scholar
  132. 132.
    Cao N, Oden K, Glasser WG (2013) Chemical modification of lignin and lignin derivatives. US Patent Application 2013/ 0338347 A1Google Scholar
  133. 133.
    Cao N, Oden K, Glasser WG (2013) Chemical modification of lignin and lignin derivatives. US Patent Application 2015/0126685 A1Google Scholar
  134. 134.
    Ling S, Guizhen F (2014) Light transmittance and gas permeability of alkaline lignin-poly vinyl alcohol film with formaldehyde crosslinker. Trans Chin Soc Agric Eng 30(4):239–246Google Scholar
  135. 135.
    Mishra S, Mishra A, Kaushik N, Khan M (2007) Study of performance properties of lignin-based polyblends with polyvinyl chloride. J Mater Process Tech 183:273–276CrossRefGoogle Scholar
  136. 136.
    Aguié-Béghin V, Foulon L, Soto P, Crônier D, Corti E, Legée F, Baumberger S (2015) Use of food and packaging model matrices to investigate the antioxidant properties of biorefinery grass lignins. J Agric Food Chem 63(45):10022–10031CrossRefGoogle Scholar
  137. 137.
    Garcia A, Toledano A, Andres MA, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45:935–940CrossRefGoogle Scholar
  138. 138.
    Zoia L, Salanti A, Frigerio P, Orlandi M (2014) Exploring allylation and Claisen rearrangement as a novel chemical modification of lignin. BioResources 9(4):6540–6561CrossRefGoogle Scholar
  139. 139.
    Hussin MH, Rahim AA, Nasir M, Ibrahim M, Yemloul M, Perrin D, Brosse N (2014) Investigation on the structure and antioxidant properties of modified lignin obtained by different combinative processes of oil palm fronds (OPF) biomass. Ind Crops Prod 52:544–551CrossRefGoogle Scholar
  140. 140.
    Boeriu C, Bravo D, Gosselink R, Dam J (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218CrossRefGoogle Scholar
  141. 141.
    Arshanitsa A, Ponomarenko J, Dizhbite T, Andersone A, Gosselink RJA, van der Putten J, Lauberts M, Telysheva G (2013) Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J Anal Appl Pyrol 103(2013):78–85CrossRefGoogle Scholar
  142. 142.
    Ponomarenko J, Dizhbite T, Lauberts M, Viksna A, Dobele G, Bikovens O, Telysheva G (2014) Characterization of softwood and hardwood lignoboost kraft lignins with emphasis on their antioxidant activity. BioResources 9(2):2051–2068CrossRefGoogle Scholar
  143. 143.
    Dizhbite Tatiana, Jurkjane Galina Telysheva Vilhelmina, Viesturs Uldis (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317CrossRefGoogle Scholar
  144. 144.
    Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81:9–18CrossRefGoogle Scholar
  145. 145.
    Gregorova A, Cibulkova Z, Kosikova B, Simon P (2005) Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym Degrad Stab 89:553–558CrossRefGoogle Scholar
  146. 146.
    Alexy P, Kosıkova B, Podstranska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41:4901–4908CrossRefGoogle Scholar
  147. 147.
    Toh K, Nakano S, Yokoyama H, Ebe K, Gotoh K, Noda H (2005) Anti-deterioration effect of lignin as an ultraviolet absorbent in polypropylene and polyethylene. Polym J 37:633–635CrossRefGoogle Scholar
  148. 148.
    Pucciariello R, Villani V, Bonini C, Auria MD, Vetere T (2004) Physical properties of straw lignin-based polymer blends. Polymer 45:4159–4169CrossRefGoogle Scholar
  149. 149.
    Faruk O, Sain M (2013) Continuous extrusion foaming of lignin enhanced thermoplastic polyurethane (TPU). J Biobased Mater Bioenergy 7(3):309–314CrossRefGoogle Scholar
  150. 150.
    Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa V (2004) Properties of lignin polyurethane films prepared by casting method. Ind Crop Prod 20:231–241CrossRefGoogle Scholar
  151. 151.
    Lisperguer J, Nuñez C, Perez-Guerrero P (2013) Structure and thermal properties of maleated lignin recycled polystyrene composites. J Chil Chem Soc 58(4) Concepción dic. http://dx.doi.org/10.4067/S0717-97072013000400005
  152. 152.
    Fernandes D, Hechenleitner A, Pineda E (2006) Kinetic study of the thermal decomposition of poly (vinyl alcohol)/kraft lignin derivative blends. Thermochim Acta 441:101–109CrossRefGoogle Scholar
  153. 153.
    Corradini E, Pineda EAG, Hechenleitner AAW (1999) Lignin-poly (vinyl alcohol) blends studied by thermal analysis. Polym Degrad Stab 66:199–208CrossRefGoogle Scholar
  154. 154.
    Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79:139–145CrossRefGoogle Scholar
  155. 155.
    Canetti M, Bertini F, De Chirico A, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91:494–498CrossRefGoogle Scholar
  156. 156.
    Morandim-Giannetti A, Agnelli J, Lancas B, Magnabosco R, Casarin S, Bettini S (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohyd Polym 87:2563–2568CrossRefGoogle Scholar
  157. 157.
    Barzegari MR, Alemdar A, Zhang Y, Rodrigue D (2013) Thermal analysis of highly filled composites of polystyrene with lignin. Polym Polym Compos 21:357Google Scholar
  158. 158.
    Veas C, Hotaling EL (2009) Lignin in tire components. WO 2009/145784Google Scholar
  159. 159.
    Setua DK, Shukla MK, Nigam V, Singh H (2000) Lignin reinforced rubber composites. Polym Compos 21(6):988–995CrossRefGoogle Scholar
  160. 160.
    Benko D, Hahn BR, Cohen MP, Dirk SM, Cicotte KN (2014) Functionalized lignin, rubber containing functionalized lignin and products containing such rubber composition. U.S. Pat. 8664305B2Google Scholar
  161. 161.
    Hanel T, Castellani L, Orlandi M, Frigeiro P, Zoia L (2014) Tyre for vehicle wheels. WO 2014/097108A1Google Scholar
  162. 162.
    Bahl K, Jana S (2014) Surface modification of lignosulfonates for reinforcement of styrene–butadiene rubber compounds. J Appl Polym Sci 131:40123CrossRefGoogle Scholar
  163. 163.
    Jiang C, He H, Jiang H, Ma L, Jia DM (2013) Nano-lignin filled natural rubber composites: Preparation and characterization. Express Polym Lett 7(5):480–493CrossRefGoogle Scholar
  164. 164.
    Kosikova B, Gregorova A (2005) Sulfur-free lignin as reinforcing component of styrene-butadiene rubber. J Appl Polym Sci 97:924–929CrossRefGoogle Scholar
  165. 165.
    Frigerio P, Zoia L, Orlandi M, Hanel T, Castellani L (2014) Application of sulphur-free lignins as a filler for elastomers: effect of hexamethylenetetramine treatment. BioResources 9(1):1387–1401CrossRefGoogle Scholar
  166. 166.
    Tran Chau D, Chen Jihua, Keum Jong K, Naskar Amit K (2016) A new class of renewable thermoplastics with extraordinary performance from nanostructured lignin-elastomers. Adv Funct Mater. doi: 10.1002/adfm.201504990 Google Scholar
  167. 167.
    Yu P, He H, Jiang C, Wang D, Jia Y, Zhou L, Jia DM (2015) Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks. Express Polym Lett 9(1):36–48CrossRefGoogle Scholar
  168. 168.
    Yu P, He H, Jiang C, Jia Y, Wang D, Yao X, Jia D, Luo Y (2016) Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin. J Appl Polym Sci 133:42922Google Scholar
  169. 169.
    Dimitri MS, Force CG (1981) Tackifying composition for rubber. US Patent 4,287,104Google Scholar
  170. 170.
    Lora JH, Trojan M, Klingensmith W (1993) Rubber compositions containing high purity lignin derivatives. US Patent 5,196,460Google Scholar
  171. 171.
    Gregorová A, Košíková B, Moravčík R (2006) Stabilization effect of lignin in natural rubber. Polym Degrad Stab 91(2):229–233CrossRefGoogle Scholar
  172. 172.
    Furlan LT, Rodrigues MA, De Paoli MA (1985) Sugar cane bagasse-lignin a stabilizer for rubbers, Part III styrene/butadiene rubber and natural rubber. Polym Degrad Stab 13:337–350CrossRefGoogle Scholar
  173. 173.
    De Paoli MA, Furlan LT (1985) Sugar cane bagasse-lignin a stabilizer for rubbers, Part II butadiene rubber. Polym Degrad Stab 13:129–138CrossRefGoogle Scholar
  174. 174.
    De Paoli MA, Furlan LT (1985) Sugar cane bagasse-lignin as photo-stabilizer for butadiene rubber. Polym Degrad Stab 11:327–333CrossRefGoogle Scholar
  175. 175.
    Song P, Cao Z, Fu S, Fang Z, Wu Q, Ye J (2011) Thermal degradation and flame retardancy properties of ABS/lignin: effects of lignin content and reactive compatibilization. Thermochim Acta 518:59–65CrossRefGoogle Scholar
  176. 176.
    Cotugno S, De Luca F, Caliano L (2015) Method of joining two rubber tyre portions. WO 2015033285 A1Google Scholar
  177. 177.
    Cotugno S, Caliano L Tyre body ply skim. US Pat Application 2016/0009906 A1Google Scholar
  178. 178.
    Kamada S (2015) Rubber composition for tire tread and pneumatic tire. US Patent 9012540 B2Google Scholar
  179. 179.
    Baumberger S (2002) Starch-lignin films. In: Hu TQ (ed) Chemical modification, properties, and usage of lignin. Kluwer Academic/Plenum Publishers, New York, pp 1–19CrossRefGoogle Scholar
  180. 180.
    Spiridon I, Teaca CA, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46:3241–3251CrossRefGoogle Scholar
  181. 181.
    Bodirlau R, Teaca C, Spiridon I (2013) Influence of natural fillers on the properties of starch-based biocomposite films. Compos B 44:575–583CrossRefGoogle Scholar
  182. 182.
    Espinoza Acosta JL, Torres Chávez PI, Ramírez-Wong B, Bello-Pérez LA, Vega Ríos A, Carvajal Millán E, Plascencia Jatomea M, Ledesma Osuna AI (2015) Mechanical, thermal, and antioxidant properties of composite films prepared from durum wheat starch and lignin. Starch Stärke 67:502–511CrossRefGoogle Scholar
  183. 183.
    Bhat R, Abdullah N, Din RH, Tay GS (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119(4):707–713Google Scholar
  184. 184.
    Stevens ES, Willett JL, Shogren RL (2007) Thermoplastic starch-kraft lignin-glycerol blends. J Biobased Mater Bioenergy 1(3):351–359CrossRefGoogle Scholar
  185. 185.
    Ban W, Song J, Lucia LA (2007) Influence of natural biomaterials on the absorbency and transparency of starch-derived films: an optimization study. Ind Eng Chem Res 46(20):6480–6485CrossRefGoogle Scholar
  186. 186.
    Lepifre S, Baumberger S, Pollet B, Cazaux F, Coqueret X, Lapierre C (2004) Reactivity of sulphur-free alkali lignins within starch films. Ind Crops Prod 20:219–230CrossRefGoogle Scholar
  187. 187.
    Lepifre S, Froment M, Cazaux F, Houot S, Lourdin D, Coqueret X, Lapierre C, Baumberger S (2004) Lignin incorporation combined with electron-beam irradiation improves the surface water resistance of starch films. Biomacromolecules 5:1678–1686CrossRefGoogle Scholar
  188. 188.
    Kaewtatip K, Thongmee J (2013) Effect of kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des 49:701–704CrossRefGoogle Scholar
  189. 189.
    Miranda CS, Ferreira MS, Magalhães MT, Bispo APG, Oliveira JC, Silva JBA, José NM (2015) Starch-based films plasticized with glycerol and lignin from piassava fiber reinforced with nanocrystals from eucalyptus. Mater Today Proc 2(1):134–140Google Scholar
  190. 190.
    Miranda CS, Ferreira MS, Magalhães MT, Santos WJ, Oliveira JC, Silva JBA, José NM (2015) Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals. Mater Today Proc 2(1):63–69Google Scholar
  191. 191.
    Stevens ES, Klamczynski A, Glenn GM (2010) Starch-lignin foams. Express Polym Lett 4(5):311–320CrossRefGoogle Scholar
  192. 192.
    Çalgeris İ, Çakmakçı E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch/Stärke 64:399–407CrossRefGoogle Scholar
  193. 193.
    Vengal JC, Srikumar M (2005) Processing and study of novel lignin-starch and lignin-gelatin biodegradable polymeric films. Trends Biomater Artif Organs 18(2):237–241Google Scholar
  194. 194.
    Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2013) Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocoll 30:163–172CrossRefGoogle Scholar
  195. 195.
    Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2012) Role of lignosulphonate in properties of fish gelatin films. Food Hydrocolloids 27:60–71CrossRefGoogle Scholar
  196. 196.
    Ojagh SM, Núñez-Flores R, López-Caballero ME, Montero MP, Gómez-Guillén MC (2011) Lessening of high-pressure-induced changes in Atlantic salmon muscle by the combined use of a fish gelatin–lignin film. Food Chem 125:595–606CrossRefGoogle Scholar
  197. 197.
    Shankar S, Reddy JP, Rhim JW (2015) Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int J Biol Macromol 81(81):267–273CrossRefGoogle Scholar
  198. 198.
    Kaewtatip K, Menut P, Auvergne R, Tanrattanakul V, Morel MH, Guilbert S (2010) Interactions of kraft lignin and wheat gluten during biomaterial processing: evidence for the role of phenolic groups. J Agric Food Chem 58:4185–4192CrossRefGoogle Scholar
  199. 199.
    Kunanopparat T, Menut P, Morel MH, Guilbert S (2009) Modification of the wheat gluten network by kraft lignin addition. J Agric Food Chem 57:8526–8533CrossRefGoogle Scholar
  200. 200.
    Kunanopparat T, Menut P, Morel MH, Guilbert S (2012) Improving wheat gluten materials properties by kraft lignin addition. J Appl Polym Sci 125:1391–1399CrossRefGoogle Scholar
  201. 201.
    Oliviero M, Verdolotti L, Nedi I, Docimo F, Di Maio E, Iannace S (2012) Effect of two kinds of lignins, alkaline lignin and sodium lignosulfonate, on the foamability of thermoplastic zein-based bionanocomposites. J Cell Plast 48(6):516–525CrossRefGoogle Scholar
  202. 202.
    Arancibia MY, López-Caballero ME, Gómez-Guillén C, Montero P (2014) Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food Control 44:7–15CrossRefGoogle Scholar
  203. 203.
    Arancibia M, Rabossi A, Bochicchio PA, Moreno S, López-Caballero ME, Gómez-Guillén C, Montero P (2013) Biodegradable films containing clove or citronella essential oils against the mediterranean fruit fly ceratitis capitata (diptera tephritidae). J Agric Food Tech 3(3):1–7Google Scholar
  204. 204.
    Massey-brooker AD, Mauro Vaccaro M, Scialla S, Walker SJ, Morganti P, Carezzi F, Benjelloun-mylayah B, Crestini C, Lange H, Bartzoka E (2016) Consumer goods product comprising chitin, lignin and a polymer or co-polymer. US Patent Application 2016/0074311 A1Google Scholar
  205. 205.
    Rahman MA, De Santis D, Spagnoli G, Ramorino G, Penco M, Phuong VT, Lazzeri A (2013) Biocomposites based on lignin and plasticized poly(L-lactic acid). J Appl Polym Sci 129:202–214Google Scholar
  206. 206.
    Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos B 69(2015):342–349CrossRefGoogle Scholar
  207. 207.
    Dorgan JR, Eyser MP, Perbix C (2013) Polylactide-graft lignin blends and co-polymers. US Patent Application 2013/0281582 A1Google Scholar
  208. 208.
    Mohanty AK, Misra M, Sahoo S (2012) Lignin based materials and methods of making those. US Patent Application 20120071591AlGoogle Scholar
  209. 209.
    Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Thermo-mechanical characterization of bioblends from polylactide and lignin. Macromol Mater Eng 300(3):299–311CrossRefGoogle Scholar
  210. 210.
    Sahoo S, Misra M, Mohanty AK (2014) Biocomposites from switchgrass and lignin hybrid and poly (butylene succinate) bioplastic: studies on reactive compatibilization and performance evaluation. Macromol Mater Eng 299(2):178–189CrossRefGoogle Scholar
  211. 211.
    Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crops Prod 32:656–661CrossRefGoogle Scholar
  212. 212.
    Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338CrossRefGoogle Scholar
  213. 213.
    Mousavioun P, George GA, Doherty WOS (2012) Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polym Degrad Stab 97:1114–1122CrossRefGoogle Scholar
  214. 214.
    Jopson RN (1993) Saturation technology for corrugated containers. Tappi J 76(4):207–214Google Scholar
  215. 215.
    Owens BA, Collias DI, Wnuk AJ (2003) Methods for the reduction of bleeding of lignosulfonates from lignosulfonate-treated substrates. US Patent 6,458,419 B2Google Scholar
  216. 216.
    Lyons AV, Berry E (2000) Lignin-based vapor barrier formulations. EP 0904330 A4Google Scholar
  217. 217.
    Wang H, Easteal AJ, Edmonds N (2008) Prevulcanized natural rubber latex/modified lignin dispersion for water vapour barrier coatings on paperboard packaging. Adv Mater Res 47–50:93–96CrossRefGoogle Scholar
  218. 218.
    Doherty WOS, Halley P, Cronin D, Edye LA (2010) Method for treating paper product. US Patent Application 2010/0166968 A1Google Scholar
  219. 219.
    Edye LA, Tietz AJ (2015) Lignin-based waterproof coating. WO2015054736A1Google Scholar
  220. 220.
    Tamminen T, Ropponen J, Hult E-L, Poppius-Levlin K (2014) Functionalized lignin and method of producing the same. US Patent application 2014/0243511 A1Google Scholar
  221. 221.
    Hult E-L, Koivu K, Asikkala J, Ropponen J, Wrigstedt P, Sipilä J, Poppius-Levlin K (2013) Esterified lignin coating as water vapor and oxygen barrier for fiber-based packaging. Holzforschung 67(8):899–905CrossRefGoogle Scholar
  222. 222.
    Nägele H, Pfitzer J, Eisenreich N, Eyerer P, Elsner P, Eckl W (2003) Plastic material made from a polymer blend. US Patent 6,509,397 B1Google Scholar
  223. 223.
    Nägele H, Pfitzer J, Inone E, Eyerer P, Eisenreich N, Eckl W (2004) Composition for the production n of shaped bodies and methods for the production of shaped bodies made of said composition. US Patent 6,706,106 B1Google Scholar
  224. 224.
  225. 225.
    Goldberg B (2013) Revolutionary fibre gardening pots developed at U of T to hit shelves soon. U of T News, http://www.news.utoronto.ca/revolutionary-fibre-gardening-pots-developed-u-t-hit-shelves-soon. Accessed 18 Feb 2016
  226. 226.
    Hambardzumyan A, Foulon L, Chabbert B, Aguie-Beghin V (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromolecules 13:4081–4088CrossRefGoogle Scholar
  227. 227.
    Wu R-L, Wang X-L, Li F, Li H-Z, Wang Y-Z (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Biores Technol 100:2569–2574CrossRefGoogle Scholar
  228. 228.
    Karampelas BE (2016) Automotive tires containing hydrophobic nanocellulose. US Patent Application 2016/01222515Google Scholar
  229. 229.
    Kadla JF, Kubo S, Gilbert RD, Venditti RA Lignin based carbon fibers, Chapter 7. In: Hu TQ (ed) Chemical modification, properties and usage of lignin. Kluwer Academic/Plenum Publishers, New York, pp 121–137Google Scholar
  230. 230.
    Saito T, Perkins JH, Vautard F, Meyer HM, Messman JM, Tolnai B, Naskar AK (2014) Methanol fractionation of softwood kraft lignin: impact on the lignin properties. ChemSusChem 7:221–228CrossRefGoogle Scholar
  231. 231.
    Norberg I, Nordstrom Y, Drougge R, Gellerstedt G, Sjoholm E (2013) A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J Appl Polym Sci 128(6):3824–3830CrossRefGoogle Scholar
  232. 232.
    Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130:713–728CrossRefGoogle Scholar
  233. 233.
    Paul R, Burwell D, Dai X, Naskar A, Gallego N, Akato K (2015) Recent progress in producing low-cost and renewable lignin-based carbon fibers. CAMX Conference Proceedings. Dallas, TX, October 26–29. CAMX—The Composites and Advanced Materials Expo. http://www.osti.gov/scitech/servlets/purl/1224680/. Accessed 12 May 2016
  234. 234.
    Dallmeyer I, Lin LT, Li Y, Ko F, Kadla JF (2014) Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng 299(5):540–551CrossRefGoogle Scholar
  235. 235.
    Eckert RC, Abdullah Z (2010) Method for the production of lignin-containing precursor fibres and also carbon fibres. US Patent 7,678,358 B2Google Scholar
  236. 236.
    Thunga M, Chen K, Grewell D, Kessler MR (2014) Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 68:159–166CrossRefGoogle Scholar
  237. 237.
    Chatterjee S, Jones EB, Clingenpeel AC, McKenna AM, Rios O, McNutt NW, Keffer DJ, Johs A (2014) Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains. ACS Sustain Chem Eng 2(8):2002–2010CrossRefGoogle Scholar
  238. 238.
    Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124:227CrossRefGoogle Scholar
  239. 239.
    Baker DA, Hosseinaei O (2014) High glass transition lignins and lignin derivatives for the manufacture of carbon and graphite fibers. U.S. Patent Application No. 20140271443Google Scholar
  240. 240.
    Awal A, Sain M (2013) Characterization of soda hardwood lignin and the formation of lignin fibers by melt spinning. J Appl Polym Sci 129(5):2765–2771CrossRefGoogle Scholar
  241. 241.
    Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13(2):97–105CrossRefGoogle Scholar
  242. 242.
    Thunga M, Chen K, Kessler MR (2016) Process of making carbon fibers from compositions including esterified lignin and poly(lactic acid). US Patent 9,340,425Google Scholar
  243. 243.
    Nordstrom Y, Norberg I, Sjoholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129(3):1274–1279CrossRefGoogle Scholar
  244. 244.
    Baker FS, Baker DA, Menchhofer PA (2011) Carbon nanotube enhanced precursor for carbon fiber production and method of making a CNT-enhanced continuous lignin fiber. US Patent Application 2011285049Google Scholar
  245. 245.
    Sevastyanova O, Qin W, Kadla JF (2010) Effect of nanofillers as reinforcement agents for lignin composite fibers. J Appl Polym Sci 117(5):2877–2881Google Scholar
  246. 246.
    Bissett PJ, Herriott CW (2014) Lignin/polyacrylonitrile-containing dopes, fibers, and methods of making same. U.S. Patent 8,771,832 B2Google Scholar
  247. 247.
    Liu HC, Chien AT, Newcomb BA, Davijani AAB, Kumar S (2016) Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101:382–389CrossRefGoogle Scholar
  248. 248.
    Husman G (2014) Development and commercialization of a novel low cost carbon fiber. http://energy.gov/sites/prod/files/2014/07/f17/lm048_husman_2014_o.pdf. Accessed 12 May 2016
  249. 249.
    Maradur SP, Kim CH, Kim SY, Kim B-H, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Metals 162:453–459CrossRefGoogle Scholar
  250. 250.
    Xia K, Ouyang Q, Chen Y, Wang X, Qian X, Wang L (2016) Preparation and characterization of lignosulfonate-acrylonitrile copolymer as a novel carbon fiber precursor. ACS Sustain Chem Eng 4:159–168CrossRefGoogle Scholar
  251. 251.
    Seydibeyoğlu MÖ (2012) A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor. J Biomed Biotechnol 2012:1–8CrossRefGoogle Scholar
  252. 252.
    Liu HC, Chien AT, Newcomb BA, Liu Y, Kumar S (2015) Processing, structure, and properties of lignin-and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain Chem Eng 3(9):1943–1954CrossRefGoogle Scholar
  253. 253.
    Lallave M, Bedia J, Ruiz-Rosas R, Rodrıguez-Mirasol J, Cordero T, Otero JC, Marquez M, Barrero A, Loscertales IG (2007) Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv Mater 19:4292–4296CrossRefGoogle Scholar
  254. 254.
    Dallmeyer I, Ko F, Kadla JF (2010) Electrospinning of technical lignins for the production of fibrous networks. J Wood Chem Technol 30:315–329CrossRefGoogle Scholar
  255. 255.
    Teng N-Y, Dallmeyer I, Kadla JF (2013) Incorporation of multiwalled carbon nanotubes into electrospun softwood Kraft lignin-based fibers. J Wood Chem Technol 33(4):299–316CrossRefGoogle Scholar
  256. 256.
    Seo DK, Jeun JP, Kim HB, Kang PH (2011) Preparation and characterization of the carbon nanofiber mat produced from electrospun PAN/lignin precursors by electrobeam radiation. Rev Adv Mater Sci 28:31Google Scholar
  257. 257.
    Zhang M, Ogale A (2014) Carbon fibers from dry-spinning of acetylated softwood kraft lignin. Carbon 69:626–629CrossRefGoogle Scholar
  258. 258.
    Zhang M, Jin J, Ogale AA (2015) Carbon fibers from UV-assisted stabilization of lignin-based precursors. Fibers 3:184–196CrossRefGoogle Scholar
  259. 259.
    Lehmann A, Horst Ebeling H, Fink H-P (2014) Method for the production of lignin-containing precursor fibres and also carbon fibres. US Patent Application 2014/0194603A1Google Scholar
  260. 260.
    Schreiber M, Vivekanandhan S, Mohanty AK, Misra M (2015) Iodine treatment of lignin-cellulose acetate electrospun fibers: enhancement of green fiber carbonization. ACS Sustain Chem Eng 3(1):33–41CrossRefGoogle Scholar
  261. 261.
    Ichikawa H, Yokoyama A, Nankjima N (1992) JP Pat. 4,194,029Google Scholar
  262. 262.
    Kim MS, Lee DH, Kim CH, Lee YJ, Hwang JY, Yang C-M, Kim YA, Yang KS (2015) Shell-core structured carbon fibers via melt spinning of petroleum-and wood-processing waste blends. Carbon 85:194–200CrossRefGoogle Scholar
  263. 263.
    Jia Z, Lu C, Liu Y, Zhou P, Wang L (2016) Lignin/polyacrylonitrile composite hollow fibers prepared by wet-spinning method. ACS Sustain Chem Eng 4(5):2838–2842CrossRefGoogle Scholar
  264. 264.
    Dallmeyer I, Chowdhury S, Kadla JF (2013) Preparation and characterization of kraft lignin-based moisture responsive films with reversible shape-change capability. Biomacromolecules 14:2354–2363CrossRefGoogle Scholar
  265. 265.
    Ruiz-Rosas P, Bedia J, Lallave M, Loscertales IG, Barrero A, Rodrıguez-Mirasol J, Cordero T (2010) The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 48:696–705CrossRefGoogle Scholar
  266. 266.
    Kannari N, Takigami M, Maie T, Honda H, Kusadokoro S, Ozaki J (2013) Nanoshell-containing carbon cathode catalyst for proton exchange membrane fuel cell from herbaceous plants lignin. Smart Grid Renew Energy 4:10–15CrossRefGoogle Scholar
  267. 267.
    Choi DI, Lee J-N, Song J, Kang PH, Park J-K, Lee YM (2013) Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes. J Solid State Electrochem 17:2471–2475CrossRefGoogle Scholar
  268. 268.
    Mitchell MD, Owens BA, Collias DI, Wnuk AJ (2004) Filters and filter materials for the removal of microorganisms and processes for making the same. US Patent 6,827,854 B2Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.Lora Consulting LLCMediaUSA

Personalised recommendations