Advertisement

Ex Vivo Enzymatic Conversion of Non-food Cellulose Biomass to Starch

  • Chun YouEmail author
  • Y. H. Percival ZhangEmail author
Chapter
  • 693 Downloads
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

To meet the world’s rising future food/feed needs, outputs of modern agriculture must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. In this chapter, we propose an ex vivo synthetic enzymatic pathway to enable the transformation of non-food cellulose to amylose, a high-value linear starch, meanwhile glucose released by enzymatic hydrolysis of cellulose is used to produce ethanol and/or single-cell protein by yeast fermentation in the same vessel. The strategy of simultaneous enzymatic biotransformation and microbial fermentation is the basis of new biomass biorefineries that would address the food, fuels, and environment trilemma by coproducing food/feed, biomaterials, and biofuels from the most abundant renewable bioresource—non-food lignocellulosic biomass. Toward this development, new directions pertaining to pretreatment of lignocellulosic biomass and advanced enzyme engineering are discussed to increase the efficiency of saccharification.

Keywords

Bioeconomy New biorefinery Food and feed In vitro synthetic biology Synthetic amylose Food-energy-water nexus 

References

  1. 1.
    Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC et al (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  2. 2.
    Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  3. 3.
    The World Economic Forum Water Initiative (2011) Water security: the water-food-energy-climate nexus. Island Press, WashingtonCrossRefGoogle Scholar
  4. 4.
    Bruce TJ (2012) GM as a route for delivery of sustainable crop protection. J Exp Bot 63:537–541CrossRefGoogle Scholar
  5. 5.
    Bagla P (2012) Negative report on GM crops shakes government’s food agenda. Science 337:789CrossRefGoogle Scholar
  6. 6.
    Chen H-G, Zhang YHP (2015) New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renew Sustain Energy Rev 47:117–132CrossRefGoogle Scholar
  7. 7.
    Varshney VK, Naithani S (2011) Chemical functionalization of cellulose derived from nonconventional sources. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 43–60CrossRefGoogle Scholar
  8. 8.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRefGoogle Scholar
  9. 9.
    Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380CrossRefGoogle Scholar
  10. 10.
    Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501CrossRefGoogle Scholar
  11. 11.
    Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277CrossRefGoogle Scholar
  12. 12.
    Swartz JR (2011) Transforming biochemical engineering with cell-free biology. AIChE J 58:5–13CrossRefGoogle Scholar
  13. 13.
    Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 2:e456CrossRefGoogle Scholar
  14. 14.
    Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, Philipp A, Haack M, Rühmann B, Kettling U et al (2012) Cell-free metabolic engineering—production of chemicals via minimized reaction cascades. ChemSusChem 5:2165–2172CrossRefGoogle Scholar
  15. 15.
    Zhang Y-HP, Sun J-B, Zhong J-J (2010) Biofuel production by in vitro synthetic pathway transformation. Curr Opin Biotechnol 21:663–669CrossRefGoogle Scholar
  16. 16.
    You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang X-Z, Li J, Zhang Y-HP (2013) Enzymatic transformation of nonfood biomass to starch. Proc Natl Acad Sci USA 110:7182–7187CrossRefGoogle Scholar
  17. 17.
    De Winter K, Cerdobbel A, Soetaert W, Desmet T (2011) Operational stability of immobilized sucrose phosphorylase: continuous production of α-glucose-1-phosphate at elevated temperatures. Proc Biochem 46:2074–2078CrossRefGoogle Scholar
  18. 18.
    Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86CrossRefGoogle Scholar
  19. 19.
    Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648CrossRefGoogle Scholar
  20. 20.
    Rollin JA, Zhu Z, Sathisuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30CrossRefGoogle Scholar
  21. 21.
    Sheppard AW, Gillespie I, Hirsch M, Begley C (2011) Biosecurity and sustainability within the growing global bioeconomy. Curr Opin Environ Sustain 3:4–10CrossRefGoogle Scholar
  22. 22.
    French CE (2009) Synthetic biology and biomass conversion: a match made in heaven? J Roy Soc Interface 6:S547–S558CrossRefGoogle Scholar
  23. 23.
    Casillas CE, Kammen DM (2010) The energy-poverty-climate nexus. Science 330:1181–1182CrossRefGoogle Scholar
  24. 24.
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRefGoogle Scholar
  25. 25.
    Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93Google Scholar
  26. 26.
    Sathitsuksanoh N, George A, Zhang YHP (2013) New lignocellulose pretreatments using cellulose solvents: a review. J Chem Technol Biotechnol 88:169–180CrossRefGoogle Scholar
  27. 27.
    Yanase M, Takata H, Fujii K, Takaha T, Kuriki T (2005) Cumulative effect of amino acid replacements results in enhanced thermostability of potato type L alpha-glucan phosphorylase. Appl Environ Microbiol 71:5433–5439CrossRefGoogle Scholar
  28. 28.
    Bae J, Kuroda K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl Environ Microb 81:59–66Google Scholar
  29. 29.
    Tsai S, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093CrossRefGoogle Scholar
  30. 30.
    Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260CrossRefGoogle Scholar
  31. 31.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212CrossRefGoogle Scholar
  32. 32.
    Nakatani Y, Yamada R, Ogino C, Kondo A (2013) Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact 12:66CrossRefGoogle Scholar
  33. 33.
    Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 5:449–455CrossRefGoogle Scholar
  34. 34.
    You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang Y-HP (2012) Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 78:1437–1444CrossRefGoogle Scholar
  35. 35.
    J-i Kadokawa (2011) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345CrossRefGoogle Scholar
  36. 36.
    J-i Kadokawa (2012) Preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. Polymers 4:116–133CrossRefGoogle Scholar
  37. 37.
    van Soest JJG, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15:208–213CrossRefGoogle Scholar
  38. 38.
    Frische R, Wollmann K, Gross-Lannert R, Schneider J, Best B (1994) Special amyloses and their use for producing biodegradable plastics. US Patent 5374304Google Scholar
  39. 39.
    Maki KC, Pelkman CL, Finocchiaro ET, Kelley KM, Lawless AL, Schild AL, Rains TM (2012) Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr 142:717–723CrossRefGoogle Scholar
  40. 40.
    Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551CrossRefGoogle Scholar
  41. 41.
    Miao M, Jiang B, Cui SW, Zhang T, Jin Z (2015) Slowly digestible starch—a review. Crit Rev Food Sci Nutr 55:1642–1657CrossRefGoogle Scholar
  42. 42.
    Gilbert R, Wu A, Sullivan M, Sumarriva G, Ersch N, Hasjim J (2013) Improving human health through understanding the complex structure of glucose polymers. Anal Bioanal Chem 405:8969–8980CrossRefGoogle Scholar
  43. 43.
    Rollin JA, Martin del Campo J, Myung S, Sun F, You C, Bakovic A, Castro R, Chandrayan SK, Wu C-H, Adams MWW et al (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci 112:4964–4969CrossRefGoogle Scholar
  44. 44.
    Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang Y-HP (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2:149–152CrossRefGoogle Scholar
  45. 45.
    Peat S, Bourne EJ, Barker SA (1948) Enzymic conversion of amylose into amylopectin. Nature 161:127CrossRefGoogle Scholar
  46. 46.
    Caschera F, Noireaux V (2014) Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 99:162–168CrossRefGoogle Scholar
  47. 47.
    Wang Y, Zhang Y-HP (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
  2. 2.Biological Systems Engineering DepartmentVirginia TechBlacksburgUSA

Personalised recommendations