Advertisement

Characterization and Engineering of Seaweed Degrading Enzymes for Biofuels and Biochemicals Production

  • Eva Garcia-Ruiz
  • Ahmet Badur
  • Christopher V. Rao
  • Huimin ZhaoEmail author
Chapter
  • 752 Downloads
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Exploitation of natural sources and increasing concerns of environmental pollution are motivating a growing interest in renewable and sustainable feedstocks for biochemicals and biofuels. Marine macroalgae have many advantages over terrestrial plant biomass, including high carbohydrate content which converts seaweed in a cogent alternative feedstock. Algal carbohydrates show a diverse sugar composition, which implies that specialized enzymatic systems are required for their conversion into biofuels and chemicals. Discovery and characterization of degrading enzymes and assimilating the relevant pathways is a key step in the depolymerization of algal polysaccharides into fermentable sugars and their metabolism by fermenting microorganisms. Current advances in metabolic engineering have generated new microorganisms capable of efficiently metabolizing macroalgal carbohydrates while producing ethanol, the target product. However, more research is required to unlock the full potential of macroalgae biomass as a feedstock for biochemical and biofuels production. This book chapter provides an overview of seaweed polysaccharides properties, degrading enzymes, and their application in the bioconversion of macroalgae into biofuels and biochemicals.

Keywords

Seaweed degrading enzymes Macroalgal polysaccharides Macroalgal glucans Alginate Biofuels Alginate lyases Agarases Laminarases Glycoside hydrolase 

Notes

Acknowledgments

We thank the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number ER65474 for financial support.

References

  1. 1.
    Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18(6):641–650CrossRefGoogle Scholar
  2. 2.
    Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60(10):2879–2896CrossRefGoogle Scholar
  3. 3.
    Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Appl Biochem Biotechnol 124(1–3):1081–1100CrossRefGoogle Scholar
  4. 4.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291CrossRefGoogle Scholar
  5. 5.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRefGoogle Scholar
  6. 6.
    Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16CrossRefGoogle Scholar
  7. 7.
    Stephens E, de Nys R, Ross IL, Hankamer B (2013) Algae fuels as an alternative to petroleum. J Pet Environ Biotechnol 4:1–7CrossRefGoogle Scholar
  8. 8.
    Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86(14–15):1679–1693CrossRefGoogle Scholar
  9. 9.
    Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77CrossRefGoogle Scholar
  10. 10.
    Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19(2):169–175CrossRefGoogle Scholar
  11. 11.
    Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36(1):84–89CrossRefGoogle Scholar
  12. 12.
    Smith S (1981) Marine macrophytes as a global carbon sink. Science 211(4484):838–840CrossRefGoogle Scholar
  13. 13.
    Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170CrossRefGoogle Scholar
  14. 14.
    Grima EM, Fernández FA, Camacho FG, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70(1):231–247CrossRefGoogle Scholar
  15. 15.
    Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180CrossRefGoogle Scholar
  16. 16.
    Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5(12):9857–9865CrossRefGoogle Scholar
  17. 17.
    Ho S-H, Ye X, Hasunuma T, Chang J-S, Kondo A (2014) Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review. Biotechnol Adv 32(8):1448–1459CrossRefGoogle Scholar
  18. 18.
    Song M, Pham HD, Seon J, Woo HC (2015) Marine brown algae: a conundrum answer for sustainable biofuels production. Renew Sustain Energy Rev 50:782–792CrossRefGoogle Scholar
  19. 19.
    Jung KA, Lim S-R, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190CrossRefGoogle Scholar
  20. 20.
    Bharathiraja B, Chakravarthy M, Kumar RR, Yogendran D, Yuvaraj D, Jayamuthunagai J, Kumar RP, Palani S (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renew Sustain Energy Rev 47:634–653CrossRefGoogle Scholar
  21. 21.
    Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: Progress and perspectives. Renew Sustain Energy Rev 47:427–437CrossRefGoogle Scholar
  22. 22.
    Samaraweera AM, Vidanarachchi JK, Kurukulasuriya MS (2011) Industrial applications of macroalgae. Handb Mar Macroalgae Biotechnol Appl Phycol 500–521Google Scholar
  23. 23.
    Jensen A (1993) Present and future needs for algae and algal products. In: Fourteenth international seaweed symposium. Springer, pp 15–23Google Scholar
  24. 24.
    Cho D-M, Kim D-S, Lee D-S, Kim H-R, Pyeun J-H (1995) Trace components and functional saccharides in seaweed-1-changes in proximate composition and trace elements according to the harvest season and places. Korean J Fish Aquatic Sci 28(1):49–59Google Scholar
  25. 25.
    Meinita MDN, Hong Y-K, Jeong G-T (2012) Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35(1–2):93–98CrossRefGoogle Scholar
  26. 26.
    Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4(4):224–235CrossRefGoogle Scholar
  27. 27.
    Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8(6):1765–1774CrossRefGoogle Scholar
  28. 28.
    Tako M, Tamanaha M, Tamashiro Y, Uechi S (2015) Structure of ulvan isolated from the edible green seaweed, Ulva pertusa. Adv Biosci Biotechnol 6(10):645CrossRefGoogle Scholar
  29. 29.
    Robic A, Bertrand D, Sassi J-F, Lerat Y, Lahaye M (2009) Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. J Appl Phycol 21(4):451–456Google Scholar
  30. 30.
    Bojko M, Madsen F, Olsen CE, Engelsen SB (2002) Physico-chemical characterization of floridean starch of red algae. Starch/Stärke 54:66–74CrossRefGoogle Scholar
  31. 31.
    Lobban CS, Wynne MJ (1981) The biology of seaweeds, vol 17. University of California Press, OaklandGoogle Scholar
  32. 32.
    Campo VL, Kawano DF, Silva Jr DBd, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77(2):167–180CrossRefGoogle Scholar
  33. 33.
    Lahaye M, Rochas C (1991) Chemical structure and physico-chemical properties of agar. In: Juanes JA, Santelices B, McLachlan JL (eds) International workshop on Gelidium: proceedings of the international workshop on gelidium held in Santander, Spain, September 3–8, 1990. Springer, Dordrecht, pp 137–148CrossRefGoogle Scholar
  34. 34.
    Fu XT, Kim SM (2010) Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 8(1):200–218CrossRefGoogle Scholar
  35. 35.
    Wang T-P, Chang L-L, Chang S-N, Wang E-C, Hwang L-C, Chen Y-H, Wang Y-M (2012) Successful preparation and characterization of biotechnological grade agarose from indigenous Gelidium amansii of Taiwan. Process Biochem 47(3):550–554CrossRefGoogle Scholar
  36. 36.
    Larsen B, Salem DMSA, Sallam MAE, Mishrikey MM, Beltagy AI (2003) Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr Res 338(22):2325–2336CrossRefGoogle Scholar
  37. 37.
    Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33(11):3279–3305CrossRefGoogle Scholar
  38. 38.
    Mautner HG (1954) The chemistry of brown algae. Econ Bot 8(2):174–192CrossRefGoogle Scholar
  39. 39.
    Hahn T, Lang S, Ulber R, Muffler K (2012) Novel procedures for the extraction of fucoidan from brown algae. Process Biochem 47(12):1691–1698CrossRefGoogle Scholar
  40. 40.
    Holtkamp AD, Kelly S, Ulber R, Lang S (2009) Fucoidans and fucoidanases—focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol 82(1):1–11CrossRefGoogle Scholar
  41. 41.
    Morya V, Kim J, Kim E-K (2012) Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Appl Microbiol Biotechnol 93(1):71–82CrossRefGoogle Scholar
  42. 42.
    Kawai S, Murata K (2016) Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. Int J Mol Sci 17(2):145CrossRefGoogle Scholar
  43. 43.
    Gacesa P (1987) Alginate-modifying enzymes. FEBS Lett 212(2):199–202CrossRefGoogle Scholar
  44. 44.
    Garron M-L, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20(12):1547–1573CrossRefGoogle Scholar
  45. 45.
    Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho Pedro M, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432(3):437–444CrossRefGoogle Scholar
  46. 46.
    Yoon H-J, Mikami B, Hashimoto W, Murata K (1999) Crystal structure of alginate lyase A1-III from Sphingomonas species A1 at 1.78 Å resolution. J Mol Biol 290(2):505–514CrossRefGoogle Scholar
  47. 47.
    Martinez-Fleites C, Smith NL, Turkenburg JP, Black GW, Taylor EJ (2009) Structures of two truncated phage-tail hyaluronate lyases from Streptococcus pyogenes serotype M1. Acta Crystallogr Sect F Struct Biol Cryst Commun 65(10):963–966CrossRefGoogle Scholar
  48. 48.
    Smith NL, Taylor EJ, Lindsay A-M, Charnock SJ, Turkenburg JP, Dodson EJ, Davies GJ, Black GW (2005) Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded β-helix. Proc Natl Acad Sci USA 102(49):17652–17657CrossRefGoogle Scholar
  49. 49.
    Thomas F, Lundqvist LCE, Jam M, Jeudy A, Barbeyron T, Sandström C, Michel G, Czjzek M (2013) Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem 288(32):23021–23037CrossRefGoogle Scholar
  50. 50.
    Ogura K, Yamasaki M, Yamada T, Mikami B, Hashimoto W, Murata K (2009) Crystal structure of family 14 polysaccharide lyase with pH-dependent modes of action. J Biol Chem 284(51):35572–35579CrossRefGoogle Scholar
  51. 51.
    Huang W, Matte A, Li Y, Kim YS, Linhardt RJ, Su H, Cygler M (1999) Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 Å resolution. J Mol Biol 294(5):1257–1269CrossRefGoogle Scholar
  52. 52.
    Park D, Jagtap S, Nair SK (2014) Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases. J Biol Chem 289(12):8645–8655CrossRefGoogle Scholar
  53. 53.
    Michel G, Pojasek K, Li Y, Sulea T, Linhardt RJ, Raman R, Prabhakar V, Sasisekharan R, Cygler M (2004) The structure of chondroitin B lyase complexed with glycosaminoglycan oligosaccharides unravels a calcium-dependent catalytic machinery. J Biol Chem 279(31):32882–32896CrossRefGoogle Scholar
  54. 54.
    Yoon H-J, Hashimoto W, Miyake O, Murata K, Mikami B (2001) Crystal structure of alginate lyase A1-III complexed with trisaccharide product at 2.0 Å resolution. J Mol Biol 307(1):9–16CrossRefGoogle Scholar
  55. 55.
    Osawa T, Matsubara Y, Muramatsu T, Kimura M, Kakuta Y (2005) Crystal structure of the alginate (poly α-l-guluronate) lyase from Corynebacterium sp. at 1.2 Å resolution. J Mol Biol 345(5):1111–1118CrossRefGoogle Scholar
  56. 56.
    Ochiai A, Yamasaki M, Mikami B, Hashimoto W, Murata K (2010) Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens. J Biol Chem 285(32):24519–24528CrossRefGoogle Scholar
  57. 57.
    Dong S, Wei T-D, Chen X-L, Li C-Y, Wang P, Xie B-B, Qin Q-L, Zhang X-Y, Pang X-H, Zhou B-C, Zhang Y-Z (2014) Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18. J Biol Chem 289(43):29558–29569CrossRefGoogle Scholar
  58. 58.
    Jagtap SS, Hehemann J-H, Polz MF, Lee J-K, Zhao H (2014) Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope, temperature, and pH adaptations. Appl Environ Microbiol 80(14):4207–4214CrossRefGoogle Scholar
  59. 59.
    Ryu M, Lee EY (2011) Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3. J Ind Eng Chem 17(5–6):853–858CrossRefGoogle Scholar
  60. 60.
    Sawabe T, Ohtsuka M, Ezura Y (1997) Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. Carbohydr Res 304(1):69–76CrossRefGoogle Scholar
  61. 61.
    Kim DE, Lee EY, Kim HS (2009) Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar Biotechnol 11(1):10–16CrossRefGoogle Scholar
  62. 62.
    Hu X, Jiang X, Hwang H-m (2006) Purification and characterization of an alginate lyase from marine bacterium Vibrio sp. mutant strain 510–64. Curr Microbiol 53(2):135–140Google Scholar
  63. 63.
    Yamasaki M, Moriwaki S, Miyake O, Hashimoto W, Murata K, Mikami B (2004) Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7: a novel alginate lyase with a β-sandwich fold. J Biol Chem 279(30):31863–31872CrossRefGoogle Scholar
  64. 64.
    Haug A, Larsen BR, Smidsrod O (1967) Studies on the sequence of uronic acid residues in alginic acid. Acta Chem Scand 21:691–704CrossRefGoogle Scholar
  65. 65.
    Chhatbar M, Meena R, Prasad K, Siddhanta A (2009) Microwave assisted rapid method for hydrolysis of sodium alginate for M/G ratio determination. Carbohydr Polym 76(4):650–656CrossRefGoogle Scholar
  66. 66.
    Zhang Z, Yu G, Zhao X, Liu H, Guan H, Lawson AM, Chai W (2006) Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 17(4):621–630CrossRefGoogle Scholar
  67. 67.
    Lundqvist LCE, Jam M, Barbeyron T, Czjzek M, Sandström C (2012) Substrate specificity of the recombinant alginate lyase from the marine bacteria Pseudomonas alginovora. Carbohydr Res 352:44–50CrossRefGoogle Scholar
  68. 68.
    Badur AH, Jagtap SS, Yalamanchili G, Lee J-K, Zhao H, Rao CV (2015) Alginate lyases from alginate-degrading Vibrio splendidus 12B01 are endolytic. Appl Environ Microbiol 81(5):1865–1873CrossRefGoogle Scholar
  69. 69.
    Hashimoto W, He J, Wada Y, Nankai H, Mikami B, Murata K (2005) Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry 44(42):13783–13794CrossRefGoogle Scholar
  70. 70.
    Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313CrossRefGoogle Scholar
  71. 71.
    Takase R, Ochiai A, Mikami B, Hashimoto W, Murata K (2010) Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochim Biophys Acta (BBA) Proteins Proteomics 1804(9):1925–1936Google Scholar
  72. 72.
    Hamza A, Piao YL, Kim M-S, Choi CH, Zhan C-G, Cho H (2011) Insight into the binding of the wild type and mutated alginate lyase (AlyVI) with its substrate: a computational and experimental study. Biochim Biophys Acta (BBA) Proteins Proteomics 1814(12):1739–1747Google Scholar
  73. 73.
    MacDonald LC, Berger BW (2014) Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473. J Biol Chem 289(26):18022–18032CrossRefGoogle Scholar
  74. 74.
    Yamasaki M, Ogura K, Hashimoto W, Mikami B, Murata K (2005) A structural basis for depolymerization of alginate by polysaccharide lyase family-7. J Mol Biol 352(1):11–21CrossRefGoogle Scholar
  75. 75.
    Tøndervik A, Klinkenberg G, Aarstad OA, Drabløs F, Ertesvåg H, Ellingsen TE, Skjåk-Bræk G, Valla S, Sletta H (2010) Isolation of mutant alginate lyases with cleavage specificity for di-guluronic acid linkages. J Biol Chem 285(46):35284–35292CrossRefGoogle Scholar
  76. 76.
    Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859CrossRefGoogle Scholar
  77. 77.
    Viladot J-L, de Ramon E, Durany O, Planas A (1998) Probing the mechanism of Bacillus 1,3-1,4-β-d-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues. Biochemistry 37(32):11332–11342CrossRefGoogle Scholar
  78. 78.
    Varghese JN, Garrett TP, Colman PM, Chen L, Høj PB, Fincher GB (1994) Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. Proc Natl Acad Sci USA 91(7):2785–2789CrossRefGoogle Scholar
  79. 79.
    Henrissat B, Coutinho PM, Davies GJ (2001) A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. In: Plant Cell Walls. Springer, pp 55–72Google Scholar
  80. 80.
    Høj PB, Condron R, Traeger JC, McAuliffe JC, Stone BA (1992) Identification of glutamic acid 105 at the active site of Bacillus amyloliquefaciens 1,3-1,4-β-d-glucan 4-glucanohydrolase using epoxide-based inhibitors. J Biol Chem 267(35):25059–25066Google Scholar
  81. 81.
    Gueguen Y, Voorhorst WG, van der Oost J, de Vos WM (1997) Molecular and biochemical characterization of an endo-β-1, 3-glucanase of the hyperthermophilic Archaeon Pyrococcus furiosus. J Biol Chem 272(50):31258–31264CrossRefGoogle Scholar
  82. 82.
    Hong T-Y, Cheng C-W, Huang J-W, Meng M (2002) Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-β-glucan. Microbiology 148(4):1151–1159CrossRefGoogle Scholar
  83. 83.
    Kawai R, Igarashi K, Yoshida M, Kitaoka M, Samejima M (2005) Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 71(6):898–906CrossRefGoogle Scholar
  84. 84.
    Furukawa S-i, Fujikawa T, Koga D, Ide A (1992) Purification and some properties of exo-type fucoidanases from Vibrio sp. N-5. Biosci Biotechnol Biochem 56(11):1829–1834Google Scholar
  85. 85.
    Bakunina IY, Shevchenko LS, Nedashkovskaya OI, Shevchenko NM, Alekseeva SA, Mikhailov VV, Zvyagintseva TN (2000) Screening of marine bacteria for fucoidanases. Microbiology 69(3):303–308CrossRefGoogle Scholar
  86. 86.
    Berteau O, McCort I, Goasdoué N, Tissot B, Daniel R (2002) Characterization of a new α-l-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of α-l-fucose from algal fucoidan (Ascophyllum nodosum). Glycobiology 12(4):273–282CrossRefGoogle Scholar
  87. 87.
    Gupta V, Trivedi N, Kumar M, Reddy CRK, Jha B (2013) Purification and characterization of exo-β-agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans. Biomass Bioenergy 49:290–298CrossRefGoogle Scholar
  88. 88.
    Feng Z, Li M (2013) Purification and characterization of agarase from Rhodococcus sp. Q5, a novel agarolytic bacterium isolated from printing and dyeing wastewater. Aquaculture 372:74–79CrossRefGoogle Scholar
  89. 89.
    Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B (2000) ι-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of κ-Carrageenases. J Biol Chem 275(45):35499–35505CrossRefGoogle Scholar
  90. 90.
    Potin P, Richard C, Barbeyron T, Henrissat B, Gey C, Petillot Y, Forest E, Dideberg O, Rochas C, Kloareg B (1995) Processing and hydrolytic mechanism of the cgkA-encoded κ-Carrageenase of Alteromonas carrageenovora. Eur J Biochem 228(3):971–975CrossRefGoogle Scholar
  91. 91.
    Ohta Y, Hatada Y (2006) A novel enzyme, λ-carrageenase, isolated from a deep-sea bacterium. J Biochem 140(4):475–481CrossRefGoogle Scholar
  92. 92.
    Chhabra SR, Shockley KR, Conners SB, Scott K, Wolfinger RD, Kelly RM (2002) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278(9):7540–7552CrossRefGoogle Scholar
  93. 93.
    Zverlov VV, Volkov IY, Velikodvorskaya GA, Schwarz WH (2001) The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in β-glucan binding within family CBM4. Microbiology 147(3):621–629CrossRefGoogle Scholar
  94. 94.
    Carvalho AL, Goyal A, Prates JAM, Bolam DN, Gilbert HJ, Pires VMR, Ferreira LMA, Planas A, Romão MJ, Fontes CMGA (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates β-1,4- and β-1,3–1,4-mixed linked glucans at a single binding site. J Biol Chem 279(33):34785–34793CrossRefGoogle Scholar
  95. 95.
    McKennedy J, Sherlock O (2015) Anaerobic digestion of marine macroalgae: a review. Renew Sustain Energy Rev 52:1781–1790CrossRefGoogle Scholar
  96. 96.
    Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol—comparison of five pretreatment technologies. Bioresour Technol 140:36–42CrossRefGoogle Scholar
  97. 97.
    Adams JM, Gallagher JA, Donnison IS (2008) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574CrossRefGoogle Scholar
  98. 98.
    Horn S, Aasen I, Østgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25(5):249–254CrossRefGoogle Scholar
  99. 99.
    Adams JMM, Toop TA, Donnison IS, Gallagher JA (2011) Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour Technol 102(21):9976–9984CrossRefGoogle Scholar
  100. 100.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900Google Scholar
  101. 101.
    Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102(16):7466–7469CrossRefGoogle Scholar
  102. 102.
    Jang J-S, Cho Y, Jeong G-T, Kim S-K (2011) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed,Saccharina japonica. Bioprocess Biosyst Eng 35(1):11–18Google Scholar
  103. 103.
    Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci 4(7):2575–2581CrossRefGoogle Scholar
  104. 104.
    Santos CNS, Regitsky DD, Yoshikuni Y (2013) Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat Comm 4:2503Google Scholar
  105. 105.
    Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505(7482):239–243CrossRefGoogle Scholar
  106. 106.
    Contador CA, Shene C, Olivera A, Yoshikuni Y, Buschmann A, Andrews BA, Asenjo JA (2015) Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock. Metab Eng Commun 2:76–84CrossRefGoogle Scholar
  107. 107.
    Kim HT, Lee S, Kim KH, Choi I-G (2012) The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour Technol 107:301–306CrossRefGoogle Scholar
  108. 108.
    Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko H-J, Choi I-G, Kim KH (2015) The novel catabolic pathway of 3,6-anhydro-l-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17(5):1677–1688CrossRefGoogle Scholar
  109. 109.
    van der Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437CrossRefGoogle Scholar
  110. 110.
    Kita A, Miura T, Kawata S, Yamaguchi T, Okamura Y, Aki T, Matsumura Y, Tajima T, Kato J, Nishio N, Nakashimada Y (2016) Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium. J Biosci Bioeng 121(3):286–292CrossRefGoogle Scholar
  111. 111.
    Mazumdar S, Lee J, Oh M-K (2013) Microbial production of 2, 3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol 136:329–336CrossRefGoogle Scholar
  112. 112.
    Mazumdar S, Bang J, Oh M-K (2014) l-Lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl Biochem Biotechnol 172(4):1938–1952CrossRefGoogle Scholar
  113. 113.
    Kawai S, Ohashi K, Yoshida S, Fujii M, Mikami S, Sato N, Murata K (2014) Bacterial pyruvate production from alginate, a promising carbon source from marine brown macroalgae. J Biosci Bioeng 117(3):269–274CrossRefGoogle Scholar
  114. 114.
    Yoshikuni Y, Cooper SR, Wargacki AJ, Manzer LE, White JF, Kapicak L, Miller DJ, Peereboom L (2014) Methods for preparing 2,5-furandicarboxylic acid. Patent number WO2013049711 A1Google Scholar
  115. 115.
    Ye J, Li Y, Teruya K, Katakura Y, Ichikawa A, Eto H, Hosoi M, Hosoi M, Nishimoto S, Shirahata S (2005) Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells. Cytotechnology 47(1):117–126CrossRefGoogle Scholar
  116. 116.
    Klarzynski O, Descamps V, Plesse B, Yvin J-C, Kloareg B, Fritig B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microbe Interact 16(2):115–122CrossRefGoogle Scholar
  117. 117.
    Hu X, Jiang X, Aubree E, Boulenguer P, Critchley AT (2006) Preparation and in vivo. antitumor activity of κ-carrageenan oligosaccharides. Pharm Biol 44(9):646–650CrossRefGoogle Scholar
  118. 118.
    Haijin M, Xiaolu J, Huashi G (2003) A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J Appl Phycol 15(4):297–303CrossRefGoogle Scholar
  119. 119.
    Yao Z, Wu H, Zhang S, Du Y (2014) Enzymatic preparation of κ-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr Polym 101:359–367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  • Eva Garcia-Ruiz
    • 1
  • Ahmet Badur
    • 2
    • 4
  • Christopher V. Rao
    • 2
  • Huimin Zhao
    • 1
    • 3
    Email author
  1. 1.Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Departments of Chemistry, Biochemistry, and BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.IlluminaSan DiegoUSA

Personalised recommendations