Skip to main content

Specialty Enzymes for Chemical Needs

  • Chapter
  • First Online:
Quality Living Through Chemurgy and Green Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1053 Accesses

Abstract

Chemical processes are vital for the manufacturing of goods that meet the human’s growing needs; on the other hand, they have resulted in increasing air pollution and environmental contamination. It is desirable to develop green chemical processes for the sustainable development of chemical industry. In this context, industrial biotechnology, which deciphers the secrets of nature’s engineering and redesigns the biological systems for exploitation in the industrial manufacturing, is becoming an exciting frontier in modern science and technology that ensures sustainable economic development in a world facing increasing environmental challenges and resource scarcity. The core of industrial biotechnology is enzyme catalysis, which possesses several advantages over traditional chemical reactions, such as high chemo-, regio- and stereoselectivity, and mild reaction conditions. As such, enzymes catalyze some reactions which are difficult to be achieved by traditional chemical reactions. Enzyme catalysis can reduce reaction steps by eliminating the protection and de-protection steps or redesign the synthetic route. In this chapter, we first discuss the unique features of enzyme catalysis compared to traditional chemical reactions. This is followed by several examples of enzyme application in the production of important chemicals to show their positive impacts in reducing chemical waste, energy consumption and production cost, thus contributing to cleaner environment, industrial sustainability, and quality living.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Raadt A, Klempier N, Faber K, Griengl H (1992) Chemoselective enzymatic hydrolysis of aliphatic and alicyclic nitriles. J Chem Soc Perkin Trans 1(1):137–140

    Google Scholar 

  2. Debabov VG, Yanenko AS (2011) Biocatalytic hydrolysis of nitriles. Ref J Chem 1(4):385–402

    Google Scholar 

  3. MartÍnková L, Křen V (2002) Nitrile- and amide-converting microbial enzymes: Stereo-, regio- and chemoselectivity. Biocatal Biotransfor 20(2):73–93

    Google Scholar 

  4. Yao P, Li J, Yuan J, Han C, Liu X, Feng J, Wu Q, Zhu D (2015) Enzymatic synthesis of a key intermediate for rosuvastatin by nitrilase-catalyzed hydrolysis of ethyl (R)-4-cyano-3-hydroxybutyate at high substrate concentration. ChemCatChem 7(2):271–275

    Google Scholar 

  5. Martínková L, Klempier N, Prepechalov I, Prikrylová V, Ovesná M, Griengl H, Kren V (1998) Chemoselective biotransformation of nitriles by Rhodococcus equi A4. Biotechnol Lett 20(10):909–912

    Google Scholar 

  6. Martı́nková, L, Klempier, N, Bardakji, J, Kandelbauer, A, Ovesná, M, Podailová, T, Kuzma, M, Pepechalová, I, Griengl, H, Kren, VR (2001) Biotransformation of 3-substituted methyl (R,S)-4-cyanobutanoates with nitrile- and amide-converting biocatalysts. J Mol Catal B Enzymatic 14 (4–6):95–99

    Google Scholar 

  7. Li G, Ren J, Wu Q, Feng J, Zhu D, Ma Y (2013) Identification of a marine NADPH-dependent aldehyde reductase for chemoselective reduction of aldehydes. J Mol Catal B Enzymatic 90:17–22

    Google Scholar 

  8. Salvano MS, Cantero JJ, Vázquez AM, Formica SM, Aimar ML (2011) Searching for local biocatalysts: Bioreduction of aldehydes using plant roots of the province of Córdoba (Argentina). J Mol Catal B Enzymatic 71(1–2):16–21

    Article  CAS  Google Scholar 

  9. Sello G, Orsini F, Bernasconi S, Di Gennaro P (2006) Selective enzymatic reduction of aldehydes. Molecules 11(5):365–369

    Article  CAS  Google Scholar 

  10. Dub PA, Ikariya T (2012) Catalytic reductive transformations of carboxylic and carbonic acid derivatives using molecular hydrogen. ACS Catal 2(8):1718–1741

    Article  CAS  Google Scholar 

  11. Seyden-Penne J (1997) Reductions by the alumino- and borohydrides in organic synthesis. Wiley-VCH Inc, New York

    Google Scholar 

  12. Brewster TP, Miller AJM, Heinekey DM, Goldberg KI (2013) Hydrogenation of carboxylic acids catalyzed by half-sandwich complexes of iridium and rhodium. J Am Chem Soc 135(43):16022–16025

    Article  CAS  Google Scholar 

  13. Otsuka T, Ishii A, Dub PA, Ikariya T (2013) Practical selective hydrogenation of α-fluorinated esters with bifunctional pincer-type ruthenium(II) catalysts leading to fluorinated alcohols or fluoral hemiacetals. J Am Chem Soc 135(26):9600–9603

    Article  CAS  Google Scholar 

  14. Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13(9):2285–2314

    Article  CAS  Google Scholar 

  15. Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci 110(1):87–92

    Article  CAS  Google Scholar 

  16. Duan Y, Yao P, Chen X, Liu X, Zhang R, Feng J, Wu Q, Zhu D (2015) Exploring the synthetic applicability of a new carboxylic acid reductase from Segniliparus rotundus DSM 44985. J Mol Catal B: Enzymatic 115:1–7

    Article  CAS  Google Scholar 

  17. Duan Y, Yao P, Du Y, Feng J, Wu Q, Zhu D (2015) Synthesis of α, β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and wittig reaction. Beil J Org Chem 11:2245–2251

    Article  CAS  Google Scholar 

  18. He A, Li T, Daniels L, Fotheringham I, Rosazza JPN (2004) Nocardia sp. Carboxylic acid reductase: Cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl Environ Microbiol 70(3):1874–1881

    Article  CAS  Google Scholar 

  19. Grau BT, Devine PN, DiMichele LN, Kosjek B (2007) Chemo- and enantioselective routes to chiral fluorinated hydroxyketones using ketoreductases. Org Lett 9(24):4951–4954

    Article  CAS  Google Scholar 

  20. Zhang D, Zhang R, Zhang J, Chen L, Zhao C, Dong W, Zhao Q, Wu Q, Zhu D (2014) Engineering a hydroxysteroid dehydrogenase to improve its soluble expression for the asymmetric reduction of cortisone to 11β-hydrocortisone. Appl Microbiol Biotechnol 98(21):8879–8886

    Article  CAS  Google Scholar 

  21. Bayer S, Birkemeyer C, Ballschmiter M (2011) A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol 89(1):91–98

    Article  CAS  Google Scholar 

  22. Mukherjee C, Zhu D, Biehl ER, Parmar RR, Hua L (2006) Enzymatic nitrile hydrolysis catalyzed by nitrilase ZmNIT2 from maize. An unprecedented β-hydroxy functionality enhanced amide formation. Tetrahedron 62(26):6150–6154

    Article  CAS  Google Scholar 

  23. Veselá A, Rucká L, Kaplan O, Pelantová H, Nešvera J, Pátek M, Martínková L (2016) Bringing nitrilase sequences from databases to life: The search for novel substrate specificities with a focus on dinitriles. Appl Microbiol Biotechnol 100(5):2193–2202

    Google Scholar 

  24. Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Nitrilase-catalyzed selective hydrolysis of dinitriles and green access to the cyanocarboxylic acids of pharmaceutical importance. Adv Synth Catal 349(10):1667–1670

    Article  CAS  Google Scholar 

  25. Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicumUSDA110 by rational genome mining. J Biotechnol 129(4):645–650

    Article  CAS  Google Scholar 

  26. Duan Y, Yao P, Ren J, Han C, Li Q, Yuan J, Feng J, Wu Q, Zhu D (2014) Biocatalytic desymmetrization of 3-substituted glutaronitriles by nitrilases. A convenient chemoenzymatic access to optically active (S)-pregabalin and (R)-baclofen. Sci China Chem 57 (8):1164–1171

    Google Scholar 

  27. Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4(12):2337–2347

    Article  CAS  Google Scholar 

  28. Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40(12):1412–1419

    Article  CAS  Google Scholar 

  29. Wildeman SMAD, Sonke T, Schoemaker HE, May O (2007) Biocatalytic reductions: From lab curiosity to “first choice”. Acc Chem Res 40(12):1260–1266

    Article  CAS  Google Scholar 

  30. Ohkuma T, Koizumi M, Ikehira H, Yokozawa T, Noyori R (2000) Selective hydrogenation of benzophenones to benzhydrols. Asymmetric synthesis of unsymmetrical diarylmethanols. Org Lett 2(5):659–662

    Article  CAS  Google Scholar 

  31. Wu J, Ji J-X, Guo R, Yeung C-H, Chan ASC (2003) Chiral [RuCl2(dipyridylphosphane)(1,2-diamine)] catalysts: applications in asymmetric hydrogenation of a wide range of simple ketones. Chem Eur J 9 (13):2963–2968

    Google Scholar 

  32. Li H, Zhu D, Hua L, Biehl ER (2009) Enantioselective reduction of diaryl ketones catalyzed by a carbonyl reductase from Sporobolomyces salmonicolor and its mutant enzymes. Adv Synth Catal 351(4):583–588

    Article  CAS  Google Scholar 

  33. Truppo MD, Pollard D, Devine P (2007) Enzyme-catalyzed enantioselective diaryl ketone reductions. Org Lett 9(2):335–338

    Article  CAS  Google Scholar 

  34. Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: Biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Proc Res Dev 14(1):188–192

    Article  CAS  Google Scholar 

  35. Ghislieri D, Turner NJ (2014) Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top Catal 57(5):284–300

    Article  CAS  Google Scholar 

  36. Groeger H, May O, Werner H, Menzel A, Altenbuchner J (2006) A “second-generation process” for the synthesis of L-neopentylglycine: asymmetric reductive amination using a recombinant whole cell catalyst. Org Proc Res Dev 10(3):666–669

    Article  CAS  Google Scholar 

  37. Zhu D, Hua L (2009) Biocatalytic asymmetric amination of carbonyl functional groups—a synthetic biology approach to organic chemistry. Biotechnol J 4(10):1420–1431

    Article  CAS  Google Scholar 

  38. Gao X, Chen X, Liu W, Feng J, Wu Q, Hua L, Zhu D (2012) A novel meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum: overexpression, characterization, and potential for D-amino acid synthesis. Appl Environ Microbiol 78(24):8595–8600

    Article  CAS  Google Scholar 

  39. Gao X, Huang F, Feng J, Chen X, Zhang H, Wang Z, Wu Q, Zhu D (2013) Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site saturation mutagenesis for d-phenylalanine synthesis. Appl Environ Microbiol 79(16):5078–5081

    Article  CAS  Google Scholar 

  40. Vedha-Peters K, Gunawardana M, Rozzell JD, Novick SJ (2006) Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. J Am Chem Soc 128(33):10923–10929

    Article  CAS  Google Scholar 

  41. Zhang D, Chen X, Zhang R, Yao P, Wu Q, Zhu D (2015) Development of β-amino acid dehydrogenase for the synthesis of β-amino acids via reductive amination of β-keto acids. ACS Catal 5(4):2220–2224

    Article  CAS  Google Scholar 

  42. Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS (2012) Development of an amine dehydrogenase for synthesis of chiral amines. Angew Chem Int Ed 51(16):3969–3972

    Article  CAS  Google Scholar 

  43. Abrahamson MJ, Wong JW, Bommarius AS (2013) The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines. Adv Synth Catal 355(9):1780–1786

    Article  CAS  Google Scholar 

  44. Ye LJ, Toh HH, Yang Y, Adams JP, Snajdrova R, Li Z (2015) Engineering of amine dehydrogenase for asymmetric reductive amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase. ACS Catal 5(2):1119–1122

    Article  CAS  Google Scholar 

  45. Chen F-F, Liu Y-Y, Zheng G-W, Xu J-H (2015) Asymmetric amination of secondary alcohols by using a redox-neutral two-enzyme cascade. ChemCatChem 7(23):3838–3841

    Article  CAS  Google Scholar 

  46. Mutti FG, Knaus T, Scrutton NS, Breuer M, Turner NJ (2015) Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349(6255):1525–1529

    Article  CAS  Google Scholar 

  47. Rocha L, Ferreira H, Pimenta E, Berlinck R, Rezende M, Landgraf M, Seleghim M, Sette L, Porto A (2010) Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii. Mar Biotechnol 12(5):552–557

    Article  CAS  Google Scholar 

  48. Ren J, Dong W, Yu B, Wu Q, Zhu D (2012) Synthesis of optically active α-bromohydrins via reduction of α-bromoacetophenone analogues catalyzed by an isolated carbonyl reductase. Tetrahedron Asymmetry 23(6–7):497–500

    Article  CAS  Google Scholar 

  49. Hann EC, Sigmund AE, Fager SK, Cooling FB, Gavagan JE, Ben-Bassat A, Chauhan S, Payne MS, Hennessey SM, DiCosimo R (2003) Biocatalytic hydrolysis of 3-hydroxyalkanenitriles to 3-hydroxyalkanoic acids. Adv Synth Catal 345 (6+7):775–782

    Google Scholar 

  50. Ankati H, Zhu D, Yang Y, Biehl ER, Hua L (2009) Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis. J Org Chem 74(4):1658–1662

    Article  CAS  Google Scholar 

  51. Coady TM, Coffey LV, O’Reilly C, Owens EB, Lennon CM (2013) A high throughput screening strategy for the assessment of nitrile-hydrolyzing activity towards the production of enantiopure β-hydroxy acids. J Mol Catal B Enzymatic 97:150–155

    Article  CAS  Google Scholar 

  52. Kamila S, Zhu D, Biehl ER, Hua L (2006) Unexpected stereorecognition in nitrilase-catalyzed hydrolysis of β-hydroxy nitriles. Org Lett 8(20):4429–4431

    Article  CAS  Google Scholar 

  53. Zhu D, Ankati H, Mukherjee C, Yang Y, Biehl ER, Hua L (2007) Asymmetric reduction of β-ketonitriles with a recombinant carbonyl reductase and enzymatic transformation to optically pure β-hydroxy carboxylic acids. Org Lett 9(13):2561–2563

    Article  CAS  Google Scholar 

  54. Hu S, Kelly S, Lee S, Tao J, Flahive E (2006) Efficient chemoenzymatic synthesis of pelitrexol via enzymic differentiation of a remote stereocenter. Org Lett 8(8):1653–1655

    Article  CAS  Google Scholar 

  55. Truppo MD, Journet M, Shafiee A, Moore JC (2006) Optimization and scale-up of a lipase-catalyzed enzymatic resolution of an indole ester intermediate for a prostaglandin D2 (DP) receptor antagonist targeting allergic rhinitis. Org Proc Res Dev 10(3):592–598

    Article  CAS  Google Scholar 

  56. Martinez CA, Hu S, Dumond Y, Tao J, Kelleher P, Tully L (2008) Development of a chemoenzymatic manufacturing process for pregabalin. Org Proc Res Dev 12(3):392–398

    Article  CAS  Google Scholar 

  57. Tanaka K, Yoshida K, Sasaki C, Osano YT (2002) Practical asymmetric synthesis of the herbicide (s)-indanofan via lipase-catalyzed kinetic resolution of a diol and stereoselective acid-catalyzed hydrolysis of a chiral epoxide. J Org Chem 67(9):3131–3133

    Article  CAS  Google Scholar 

  58. Aleu J, Bustillo AJ, Hernandez-Galan R, Collado IG (2006) Biocatalysis applied to the synthesis of agrochemicals. Curr Org Chem 10(16):2037–2054

    Article  CAS  Google Scholar 

  59. Hu S, Martinez CA, Kline B, Yazbeck D, Tao J, Kucera DJ (2006) Efficient enzymatic process for the production of (2S)-4,4-difluoro-3,3-dimethyl-N-Boc-proline, a key intermediate in the synthesis of HIV protease inhibitors. Org Proc Res Dev 10(3):650–654

    Article  CAS  Google Scholar 

  60. Bergeron S, Chaplin DA, Edwards JH, Ellis BSW, Hill CL, Holt-Tiffin K, Knight JR, Mahoney T, Osborne AP, Ruecroft G (2006) Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org Proc Res Dev 10(3):661–665

    Article  CAS  Google Scholar 

  61. DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (gssm). J Am Chem Soc 125(38):11476–11477

    Article  CAS  Google Scholar 

  62. DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: Development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124(31):9024–9025

    Article  CAS  Google Scholar 

  63. Cooling FB, Fager SK, Fallon RD, Folsom PW, Gallagher FG, Gavagan JE, Hann EC, Herkes FE, Phillips RL, Sigmund A, Wagner LW, Wu W, DiCosimo R (2001) Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J Mol Catal B Enzymatic 11(4–6):295–306

    Article  CAS  Google Scholar 

  64. Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345(4):425–435

    Article  CAS  Google Scholar 

  65. Cantarella L, Gallifuoco A, Malandra A, Martínková L, Spera A, Cantarella M (2011) High-yield continuous production of nicotinic acid via nitrile hydratase–amidase cascade reactions using cascade csmrs. Enzyme Microb Technol 48(4–5):345–350

    Article  CAS  Google Scholar 

  66. Hann EC, Eisenberg A, Fager SK, Perkins NE, Gallagher FG, Cooper SM, Gavagan JE, Stieglitz B, Hennessey SM, DiCosimo R (1999) 5-cyanovaleramide production using immobilized Pseudomonas chlororaphis b23. Bioorg Med Chem 7(10):2239–2245

    Article  CAS  Google Scholar 

  67. Steinreiber A, Faber K (2001) Microbial epoxide hydrolases for preparative biotransformations. Curr Opin Biotechnol 12(6):552–558

    Article  CAS  Google Scholar 

  68. Kong X-D, Yu H-L, Yang S, Zhou J, Zeng B-B, Xu J-H (2015) Chemoenzymatic synthesis of (R)- and (S)-propranolol using an engineered epoxide hydrolase with a high turnover number. J Mol Catal B Enzymatic 122:275–281

    Article  CAS  Google Scholar 

  69. Edegger K, Mayer SF, Steinreiber A, Faber K (2004) Chemo-enzymatic enantio-convergent asymmetric synthesis of (R)-(+)-marmin. Tetrahedron 60(3):583–588

    Article  CAS  Google Scholar 

  70. Bottalla A-L, Ibrahim-Ouali M, Santelli M, Furstoss R, Archelas A (2007) Epoxide hydrolase-catalysed kinetic resolution of a spiroepoxide, a key building block of various 11-heterosteroids. Adv Synth Catal 349(7):1102–1110

    Article  CAS  Google Scholar 

  71. Deregnaucourt J, Archelas A, Barbirato F, Paris J-M, Furstoss R (2007) Enzymatic transformations 63. High-concentration two liquid-liquid phase Aspergillus niger epoxide hydrolase-catalysed resolution: Application to trifluoromethyl-substituted aromatic epoxides. Adv Synth Catal 349 (8–9):1405–1417

    Google Scholar 

  72. Zhu D, Mukherjee C, Hua L (2005) ‘Green’ synthesis of important pharmaceutical building blocks: Enzymatic access to enantiomerically pure α-chloroalcohols. Tetrahedron Asymmetry 16(19):3275–3278

    Article  CAS  Google Scholar 

  73. Zhu DM, Hyatt BA, Hua L (2009) Enzymatic hydrogen transfer reduction of α-chloro aromatic ketones catalyzed by a hyperthermophilic alcohol dehydrogenase. J Mol Catal B Enzym 56(4):272–276

    Article  CAS  Google Scholar 

  74. Pollard D, Truppo M, Pollard J, Chen C-y, Moore J (2006) Effective synthesis of (s)-3,5-bistrifluoromethylphenyl ethanol by asymmetric enzymatic reduction. Tetrahedron Asymmetry 17 (4):554–559

    Google Scholar 

  75. Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55(5):590–595

    Article  CAS  Google Scholar 

  76. Pan J, Zheng G-W, Ye Q, Xu J-H (2014) Optimization and scale-up of a bioreduction process for preparation of ethyl (S)-4-chloro-3-hydroxybutanoate. Org Proc Res Dev 18(6):739–743

    Article  CAS  Google Scholar 

  77. Yamamoto H, Matsuyama A, Kobayashi Y (2002) Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci Biotechnol Biochem 66(2):481–483

    Article  CAS  Google Scholar 

  78. Shen N-D, Ni Y, Ma H-M, Wang L-J, Li C-X, Zheng G-W, Zhang J, Xu J-H (2012) Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ACE) inhibitors in high space–time yield by a new reductase without external cofactors. Org Lett 14(8):1982–1985

    Article  CAS  Google Scholar 

  79. Ni Y, Li C-X, Zhang J, Shen N-D, Bornscheuer UT, Xu J-H (2011) Efficient reduction of ethyl 2-oxo-4-phenylbutyrate at 620 g L−1 by a bacterial reductase with broad substrate spectrum. Adv Synth Catal 353(8):1213–1217

    Article  CAS  Google Scholar 

  80. Ema T, Okita N, Ide S, Sakai T (2007) Highly enantioselective and efficient synthesis of methyl (R)-o-chloromandelate with recombinant E. coli: toward practical and green access to clopidogrel. Org Biomol Chem 5(8):1175–1176

    Article  CAS  Google Scholar 

  81. Xu Y-P, Guan YH, Yu H-L, Ni Y, Ma B-D, Xu J-H (2014) Improved o-chlorobenzoylformate bioreduction by stabilizing aldo-keto reductase YtBe with additives. J Mol Catal B Enzymatic 104:108–114

    Article  CAS  Google Scholar 

  82. Zhang D, Chen X, Chi J, Feng J, Wu Q, Zhu D (2015) Semi-rational engineering a carbonyl reductase for the enantioselective reduction of β-amino ketones. ACS Catal 5(4):2452–2457

    Article  CAS  Google Scholar 

  83. Chen X, Mei T, Cui Y, Chen Q, Liu X, Feng J, Wu Q, Zhu D (2015) Highly efficient synthesis of optically pure (S)-1-phenyl-1,2-ethanediol by a self-sufficient whole cell biocatalyst. ChemistryOpen 4(4):483–488

    Article  CAS  Google Scholar 

  84. Brenna E, Gatti FG, Manfredi A, Monti D, Parmeggiani F (2012) Enoate reductase-mediated preparation of methyl (S)-2-bromobutanoate, a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients. Org Proc Res Dev 16(2):262–268

    Article  CAS  Google Scholar 

  85. Bechtold M, Brenna E, Femmer C, Gatti FG, Panke S, Parmeggiani F, Sacchetti A (2012) Biotechnological development of a practical synthesis of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl)propanoate (EEHP): Over 100-fold productivity increase from yeast whole cells to recombinant isolated enzymes. Org Proc Res Dev 16(2):269–276

    Article  CAS  Google Scholar 

  86. Fryszkowska A, Toogood H, Sakuma M, Gardiner JM, Stephens GM, Scrutton NS (2009) Asymmetric reduction of activated alkenes by pentaerythritol petranitrate peductase: specificity and control of stereochemical outcome by reaction optimisation. Adv Synth Catal 351:2976–2990

    Article  CAS  Google Scholar 

  87. Gao X, Ren J, Wu Q, Zhu D (2012) Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme Microb Technol 51(1):26–34

    Article  CAS  Google Scholar 

  88. Padhi SK, Bougioukou DJ, Stewart JD (2009) Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants. J Am Chem Soc 131(9):3271–3280

    Article  CAS  Google Scholar 

  89. Chen X, Gao X, Wu Q, Zhu D (2012) Synthesis of optically active dihydrocarveol via a stepwise or one-pot enzymatic reduction of (R)- and (S)-carvone. Tetrahedron Asymmetry 23(10):734–738

    Article  CAS  Google Scholar 

  90. Hanson RL, Davis BL, Goldberg SL, Johnston RM, Parker WL, Tully TP, Montana MA, Patel RN (2008) Enzymatic preparation of a d-amino acid from a racemic amino acid or keto acid. Org Proc Res Dev 12(6):1119–1129

    Article  CAS  Google Scholar 

  91. Paul CE, Rodríguez-Mata M, Busto E, Lavandera I, Gotor-Fernández V, Gotor V, García-Cerrada S, Mendiola J, de Frutos Ó, Collado I (2014) Transaminases applied to the synthesis of high added-value enantiopure amines. Org Proc Res Dev 18(6):788–792

    Article  CAS  Google Scholar 

  92. Simon RC, Grischek B, Zepeck F, Steinreiber A, Belaj F, Kroutil W (2012) Regio- and stereoselective monoamination of diketones without protecting groups. Angew Chem 124(27):6817–6820

    Article  Google Scholar 

  93. Payer SE, Schrittwieser JH, Grischek B, Simon RC, Kroutil W (2016) Regio- and stereoselective biocatalytic monoamination of a triketone enables asymmetric synthesis of both enantiomers of the pyrrolizidine alkaloid xenovenine employing transaminases. Adv Synth Catal 358(3):444–451

    Article  CAS  Google Scholar 

  94. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329(5989):305–309

    Article  CAS  Google Scholar 

  95. Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH Verlag GmbH&Co KGaA, Weinheim

    Google Scholar 

  96. Menzel A, Werner H, Altenbuchner J, Groeger H (2004) From enzymes to “designer bugs” in reductive amination: A new process for the synthesis of L-tert-leucine using a whole cell-catalyst. Eng Life Sci 4(6):573–576

    Article  CAS  Google Scholar 

  97. Gao X, Ma Q, Zhu H (2015) Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl Microbiol Biotechnol 99(8):3341–3349

    Article  CAS  Google Scholar 

  98. Hanson RL, Johnston RM, Goldberg SL, Parker WL, Goswami A (2013) Enzymatic preparation of an R-amino acid intermediate for a γ-secretase inhibitor. Org Proc Res Dev 17(4):693–700

    Article  CAS  Google Scholar 

  99. Tao F, Zhang Y, Ma C, Xu P (2011) One-pot bio-synthesis: N-acetyl-D-neuraminic acid production by a powerful engineered whole-cell catalyst. Sci Reports 1:142

    Article  CAS  Google Scholar 

  100. Xu P, Qiu JH, Zhang YN, Chen J, Wang PG, Yan B, Song J, Xi RM, Deng ZX, Ma CQ (2007) Efficient whole-cell biocatalytic synthesis of N-acetyl-D-neuraminic acid. Adv Synth Catal 349(10):1614–1618

    Article  CAS  Google Scholar 

  101. Castillo JA, Guérard-Hélaine C, Gutiérrez M, Garrabou X, Sancelme M, Schürmann M, Inoue T, Hélaine V, Charmantray F, Gefflaut T, Hecquet L, Joglar J, Clapés P, Sprenger GA, Lemaire M (2010) A mutant D-fructose-6-phosphate aldolase (Ala129Ser) with improved affinity towards dihydroxyacetone for the synthesis of polyhydroxylated compounds. Adv Synth Catal 352(6):1039–1046

    Article  CAS  Google Scholar 

  102. Goldberg SL, Goswami A, Guo Z, Chan Y, Lo ET, Lee A, Truc VC, Natalie KJ, Hang C, Rossano LT, Schmidt MA (2015) Preparation of β-hydroxy-α-amino acid using recombinant D-threonine aldolase. Org Proc Res Dev 19(9):1308–1316

    Article  CAS  Google Scholar 

  103. Lanfranchi E, Steiner K, Glieder A, Hajnal I, Sheldon RA, van Pelt S, Winkler M (2013) Mini-review: recent developments in hydroxynitrile lyases for industrial biotechnology. Recent Pat Biotechnol 7(3):197–206

    Article  CAS  Google Scholar 

  104. Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc 135(29):10863–10869

    Article  CAS  Google Scholar 

  105. Leisch H, Grosse S, Iwaki H, Hasegawa Y, Lau PCK (2011) Cyclohexylamine oxidase as a useful biocatalyst for the kinetic resolution and dereacemization of amines. Can J Chem 90(1):39–45

    Article  CAS  Google Scholar 

  106. Li G, Ren J, Yao P, Duan Y, Zhang H, Wu Q, Feng J, Lau PCK, Zhu D (2014) Deracemization of 2-methyl-1,2,3,4-tetrahydroquinoline using mutant cyclohexylamine oxidase obtained by iterative saturation mutagenesis. ACS Catal 4(3):903–908

    Article  CAS  Google Scholar 

  107. Beard TM, Turner NJ (2002) Deracemisation and stereoinversion of α-amino acids using D-amino acid oxidase and hydride reducing agents. Chem Commun 3:246–247

    Article  CAS  Google Scholar 

  108. Scheller PN, Fademrecht S, Hofelzer S, Pleiss J, Leipold F, Turner NJ, Nestl BM, Hauer B (2014) Enzyme toolbox: novel enantiocomplementary imine reductases. ChemBioChem 15(15):2201–2204

    Article  CAS  Google Scholar 

  109. Grogan G, Turner NJ (2016) Inspired by nature: NADPH-dependent imine reductases (IREDs) as catalysts for the preparation of chiral amines. Chem A Eur J 22(6):1900–1907

    Article  CAS  Google Scholar 

  110. Hussain S, Leipold F, Man H, Wells E, France SP, Mulholland KR, Grogan G, Turner NJ (2015) An (R)-imine reductase biocatalyst for the asymmetric reduction of cyclic imines. ChemCatChem 7(4):579–583

    Article  CAS  Google Scholar 

  111. Leipold F, Hussain S, Ghislieri D, Turner NJ (2013) Asymmetric reduction of cyclic imines catalyzed by a whole-cell biocatalyst containing an (S)-imine reductase. ChemCatChem 5(12):3505–3508

    Article  CAS  Google Scholar 

  112. Classen T, Korpak M, Schölzel M, Pietruszka J (2014) Stereoselective enzyme cascades: an efficient synthesis of chiral γ-butyrolactones. ACS Catal 4(5):1321–1331

    Article  CAS  Google Scholar 

  113. Brenna E, Crotti M, Gatti FG, Monti D, Parmeggiani F, Pugliese A, Santangelo S (2015) Multi-enzyme cascade synthesis of the most odorous stereoisomers of the commercial odorant muguesia®. J Mol Catal B: Enzymatic 114:37–41

    Article  CAS  Google Scholar 

  114. Yao P, Wang L, Yuan J, Cheng L, Jia R, Xie M, Feng J, Wang M, Wu Q, Zhu D (2015) Efficient biosynthesis of ethyl (R)-3-hydroxyglutarate through a one-pot bienzymatic cascade of halohydrin dehalogenase and nitrilase. ChemCatChem 7(9):1438–1444

    Article  CAS  Google Scholar 

  115. Sosedov O, Matzer K, Bürger S, Kiziak C, Baum S, Altenbuchner J, Chmura A, van Rantwijk F, Stolz A (2009) Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandelic amide from benzaldehyde and cyanide. Adv Synth Catal 351(10):1531–1538

    Article  CAS  Google Scholar 

  116. Pennec A, Hollmann F, Smit MS, Opperman DJ (2015) One-pot conversion of cycloalkanes to lactones. ChemCatChem 7(2):236–239

    Article  CAS  Google Scholar 

  117. Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz H-G, Bornscheuer UT (2015) An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew Chem Int Ed 54(9):2784–2787

    Article  CAS  Google Scholar 

  118. Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W (2014) Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid. Angew Chem Int Ed 53(51):14153–14157

    Article  CAS  Google Scholar 

  119. Ankati H, Yang Y, Zhu D, Biehl ER, Hua L (2008) Synthesis of optically pure 2-azido-1-arylethanols with isolated enzymes and conversion to triazole-containing β-blocker analogues employing click chemistry. J Org Chem 73(16):6433–6436

    Article  CAS  Google Scholar 

  120. Cuetos A, Bisogno FR, Lavandera I, Gotor V (2013) Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chem Commun 49(26):2625–2627

    Article  CAS  Google Scholar 

  121. Gröger H, Hummel W (2014) Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr Opin Chem Biol 19:171–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunming Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhu, D., Hua, L. (2016). Specialty Enzymes for Chemical Needs. In: C.K. Lau, P. (eds) Quality Living Through Chemurgy and Green Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53704-6_4

Download citation

Publish with us

Policies and ethics