Specialty Enzymes for Chemical Needs

  • Dunming ZhuEmail author
  • Ling Hua
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Chemical processes are vital for the manufacturing of goods that meet the human’s growing needs; on the other hand, they have resulted in increasing air pollution and environmental contamination. It is desirable to develop green chemical processes for the sustainable development of chemical industry. In this context, industrial biotechnology, which deciphers the secrets of nature’s engineering and redesigns the biological systems for exploitation in the industrial manufacturing, is becoming an exciting frontier in modern science and technology that ensures sustainable economic development in a world facing increasing environmental challenges and resource scarcity. The core of industrial biotechnology is enzyme catalysis, which possesses several advantages over traditional chemical reactions, such as high chemo-, regio- and stereoselectivity, and mild reaction conditions. As such, enzymes catalyze some reactions which are difficult to be achieved by traditional chemical reactions. Enzyme catalysis can reduce reaction steps by eliminating the protection and de-protection steps or redesign the synthetic route. In this chapter, we first discuss the unique features of enzyme catalysis compared to traditional chemical reactions. This is followed by several examples of enzyme application in the production of important chemicals to show their positive impacts in reducing chemical waste, energy consumption and production cost, thus contributing to cleaner environment, industrial sustainability, and quality living.


Enzyme catalysis Enzyme application in chemical industry Multienzymatic reaction Chemoenzymatic cascade Green chemical process Sustainable synthetic technology 


  1. 1.
    de Raadt A, Klempier N, Faber K, Griengl H (1992) Chemoselective enzymatic hydrolysis of aliphatic and alicyclic nitriles. J Chem Soc Perkin Trans 1(1):137–140Google Scholar
  2. 2.
    Debabov VG, Yanenko AS (2011) Biocatalytic hydrolysis of nitriles. Ref J Chem 1(4):385–402Google Scholar
  3. 3.
    MartÍnková L, Křen V (2002) Nitrile- and amide-converting microbial enzymes: Stereo-, regio- and chemoselectivity. Biocatal Biotransfor 20(2):73–93Google Scholar
  4. 4.
    Yao P, Li J, Yuan J, Han C, Liu X, Feng J, Wu Q, Zhu D (2015) Enzymatic synthesis of a key intermediate for rosuvastatin by nitrilase-catalyzed hydrolysis of ethyl (R)-4-cyano-3-hydroxybutyate at high substrate concentration. ChemCatChem 7(2):271–275Google Scholar
  5. 5.
    Martínková L, Klempier N, Prepechalov I, Prikrylová V, Ovesná M, Griengl H, Kren V (1998) Chemoselective biotransformation of nitriles by Rhodococcus equi A4. Biotechnol Lett 20(10):909–912Google Scholar
  6. 6.
    Martı́nková, L, Klempier, N, Bardakji, J, Kandelbauer, A, Ovesná, M, Podailová, T, Kuzma, M, Pepechalová, I, Griengl, H, Kren, VR (2001) Biotransformation of 3-substituted methyl (R,S)-4-cyanobutanoates with nitrile- and amide-converting biocatalysts. J Mol Catal B Enzymatic 14 (4–6):95–99Google Scholar
  7. 7.
    Li G, Ren J, Wu Q, Feng J, Zhu D, Ma Y (2013) Identification of a marine NADPH-dependent aldehyde reductase for chemoselective reduction of aldehydes. J Mol Catal B Enzymatic 90:17–22Google Scholar
  8. 8.
    Salvano MS, Cantero JJ, Vázquez AM, Formica SM, Aimar ML (2011) Searching for local biocatalysts: Bioreduction of aldehydes using plant roots of the province of Córdoba (Argentina). J Mol Catal B Enzymatic 71(1–2):16–21CrossRefGoogle Scholar
  9. 9.
    Sello G, Orsini F, Bernasconi S, Di Gennaro P (2006) Selective enzymatic reduction of aldehydes. Molecules 11(5):365–369CrossRefGoogle Scholar
  10. 10.
    Dub PA, Ikariya T (2012) Catalytic reductive transformations of carboxylic and carbonic acid derivatives using molecular hydrogen. ACS Catal 2(8):1718–1741CrossRefGoogle Scholar
  11. 11.
    Seyden-Penne J (1997) Reductions by the alumino- and borohydrides in organic synthesis. Wiley-VCH Inc, New YorkGoogle Scholar
  12. 12.
    Brewster TP, Miller AJM, Heinekey DM, Goldberg KI (2013) Hydrogenation of carboxylic acids catalyzed by half-sandwich complexes of iridium and rhodium. J Am Chem Soc 135(43):16022–16025CrossRefGoogle Scholar
  13. 13.
    Otsuka T, Ishii A, Dub PA, Ikariya T (2013) Practical selective hydrogenation of α-fluorinated esters with bifunctional pincer-type ruthenium(II) catalysts leading to fluorinated alcohols or fluoral hemiacetals. J Am Chem Soc 135(26):9600–9603CrossRefGoogle Scholar
  14. 14.
    Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13(9):2285–2314CrossRefGoogle Scholar
  15. 15.
    Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci 110(1):87–92CrossRefGoogle Scholar
  16. 16.
    Duan Y, Yao P, Chen X, Liu X, Zhang R, Feng J, Wu Q, Zhu D (2015) Exploring the synthetic applicability of a new carboxylic acid reductase from Segniliparus rotundus DSM 44985. J Mol Catal B: Enzymatic 115:1–7CrossRefGoogle Scholar
  17. 17.
    Duan Y, Yao P, Du Y, Feng J, Wu Q, Zhu D (2015) Synthesis of α, β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and wittig reaction. Beil J Org Chem 11:2245–2251CrossRefGoogle Scholar
  18. 18.
    He A, Li T, Daniels L, Fotheringham I, Rosazza JPN (2004) Nocardia sp. Carboxylic acid reductase: Cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl Environ Microbiol 70(3):1874–1881CrossRefGoogle Scholar
  19. 19.
    Grau BT, Devine PN, DiMichele LN, Kosjek B (2007) Chemo- and enantioselective routes to chiral fluorinated hydroxyketones using ketoreductases. Org Lett 9(24):4951–4954CrossRefGoogle Scholar
  20. 20.
    Zhang D, Zhang R, Zhang J, Chen L, Zhao C, Dong W, Zhao Q, Wu Q, Zhu D (2014) Engineering a hydroxysteroid dehydrogenase to improve its soluble expression for the asymmetric reduction of cortisone to 11β-hydrocortisone. Appl Microbiol Biotechnol 98(21):8879–8886CrossRefGoogle Scholar
  21. 21.
    Bayer S, Birkemeyer C, Ballschmiter M (2011) A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol 89(1):91–98CrossRefGoogle Scholar
  22. 22.
    Mukherjee C, Zhu D, Biehl ER, Parmar RR, Hua L (2006) Enzymatic nitrile hydrolysis catalyzed by nitrilase ZmNIT2 from maize. An unprecedented β-hydroxy functionality enhanced amide formation. Tetrahedron 62(26):6150–6154CrossRefGoogle Scholar
  23. 23.
    Veselá A, Rucká L, Kaplan O, Pelantová H, Nešvera J, Pátek M, Martínková L (2016) Bringing nitrilase sequences from databases to life: The search for novel substrate specificities with a focus on dinitriles. Appl Microbiol Biotechnol 100(5):2193–2202Google Scholar
  24. 24.
    Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Nitrilase-catalyzed selective hydrolysis of dinitriles and green access to the cyanocarboxylic acids of pharmaceutical importance. Adv Synth Catal 349(10):1667–1670CrossRefGoogle Scholar
  25. 25.
    Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicumUSDA110 by rational genome mining. J Biotechnol 129(4):645–650CrossRefGoogle Scholar
  26. 26.
    Duan Y, Yao P, Ren J, Han C, Li Q, Yuan J, Feng J, Wu Q, Zhu D (2014) Biocatalytic desymmetrization of 3-substituted glutaronitriles by nitrilases. A convenient chemoenzymatic access to optically active (S)-pregabalin and (R)-baclofen. Sci China Chem 57 (8):1164–1171Google Scholar
  27. 27.
    Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4(12):2337–2347CrossRefGoogle Scholar
  28. 28.
    Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40(12):1412–1419CrossRefGoogle Scholar
  29. 29.
    Wildeman SMAD, Sonke T, Schoemaker HE, May O (2007) Biocatalytic reductions: From lab curiosity to “first choice”. Acc Chem Res 40(12):1260–1266CrossRefGoogle Scholar
  30. 30.
    Ohkuma T, Koizumi M, Ikehira H, Yokozawa T, Noyori R (2000) Selective hydrogenation of benzophenones to benzhydrols. Asymmetric synthesis of unsymmetrical diarylmethanols. Org Lett 2(5):659–662CrossRefGoogle Scholar
  31. 31.
    Wu J, Ji J-X, Guo R, Yeung C-H, Chan ASC (2003) Chiral [RuCl2(dipyridylphosphane)(1,2-diamine)] catalysts: applications in asymmetric hydrogenation of a wide range of simple ketones. Chem Eur J 9 (13):2963–2968Google Scholar
  32. 32.
    Li H, Zhu D, Hua L, Biehl ER (2009) Enantioselective reduction of diaryl ketones catalyzed by a carbonyl reductase from Sporobolomyces salmonicolor and its mutant enzymes. Adv Synth Catal 351(4):583–588CrossRefGoogle Scholar
  33. 33.
    Truppo MD, Pollard D, Devine P (2007) Enzyme-catalyzed enantioselective diaryl ketone reductions. Org Lett 9(2):335–338CrossRefGoogle Scholar
  34. 34.
    Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: Biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Proc Res Dev 14(1):188–192CrossRefGoogle Scholar
  35. 35.
    Ghislieri D, Turner NJ (2014) Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top Catal 57(5):284–300CrossRefGoogle Scholar
  36. 36.
    Groeger H, May O, Werner H, Menzel A, Altenbuchner J (2006) A “second-generation process” for the synthesis of L-neopentylglycine: asymmetric reductive amination using a recombinant whole cell catalyst. Org Proc Res Dev 10(3):666–669CrossRefGoogle Scholar
  37. 37.
    Zhu D, Hua L (2009) Biocatalytic asymmetric amination of carbonyl functional groups—a synthetic biology approach to organic chemistry. Biotechnol J 4(10):1420–1431CrossRefGoogle Scholar
  38. 38.
    Gao X, Chen X, Liu W, Feng J, Wu Q, Hua L, Zhu D (2012) A novel meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum: overexpression, characterization, and potential for D-amino acid synthesis. Appl Environ Microbiol 78(24):8595–8600CrossRefGoogle Scholar
  39. 39.
    Gao X, Huang F, Feng J, Chen X, Zhang H, Wang Z, Wu Q, Zhu D (2013) Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site saturation mutagenesis for d-phenylalanine synthesis. Appl Environ Microbiol 79(16):5078–5081CrossRefGoogle Scholar
  40. 40.
    Vedha-Peters K, Gunawardana M, Rozzell JD, Novick SJ (2006) Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. J Am Chem Soc 128(33):10923–10929CrossRefGoogle Scholar
  41. 41.
    Zhang D, Chen X, Zhang R, Yao P, Wu Q, Zhu D (2015) Development of β-amino acid dehydrogenase for the synthesis of β-amino acids via reductive amination of β-keto acids. ACS Catal 5(4):2220–2224CrossRefGoogle Scholar
  42. 42.
    Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS (2012) Development of an amine dehydrogenase for synthesis of chiral amines. Angew Chem Int Ed 51(16):3969–3972CrossRefGoogle Scholar
  43. 43.
    Abrahamson MJ, Wong JW, Bommarius AS (2013) The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines. Adv Synth Catal 355(9):1780–1786CrossRefGoogle Scholar
  44. 44.
    Ye LJ, Toh HH, Yang Y, Adams JP, Snajdrova R, Li Z (2015) Engineering of amine dehydrogenase for asymmetric reductive amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase. ACS Catal 5(2):1119–1122CrossRefGoogle Scholar
  45. 45.
    Chen F-F, Liu Y-Y, Zheng G-W, Xu J-H (2015) Asymmetric amination of secondary alcohols by using a redox-neutral two-enzyme cascade. ChemCatChem 7(23):3838–3841CrossRefGoogle Scholar
  46. 46.
    Mutti FG, Knaus T, Scrutton NS, Breuer M, Turner NJ (2015) Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349(6255):1525–1529CrossRefGoogle Scholar
  47. 47.
    Rocha L, Ferreira H, Pimenta E, Berlinck R, Rezende M, Landgraf M, Seleghim M, Sette L, Porto A (2010) Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii. Mar Biotechnol 12(5):552–557CrossRefGoogle Scholar
  48. 48.
    Ren J, Dong W, Yu B, Wu Q, Zhu D (2012) Synthesis of optically active α-bromohydrins via reduction of α-bromoacetophenone analogues catalyzed by an isolated carbonyl reductase. Tetrahedron Asymmetry 23(6–7):497–500CrossRefGoogle Scholar
  49. 49.
    Hann EC, Sigmund AE, Fager SK, Cooling FB, Gavagan JE, Ben-Bassat A, Chauhan S, Payne MS, Hennessey SM, DiCosimo R (2003) Biocatalytic hydrolysis of 3-hydroxyalkanenitriles to 3-hydroxyalkanoic acids. Adv Synth Catal 345 (6+7):775–782Google Scholar
  50. 50.
    Ankati H, Zhu D, Yang Y, Biehl ER, Hua L (2009) Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis. J Org Chem 74(4):1658–1662CrossRefGoogle Scholar
  51. 51.
    Coady TM, Coffey LV, O’Reilly C, Owens EB, Lennon CM (2013) A high throughput screening strategy for the assessment of nitrile-hydrolyzing activity towards the production of enantiopure β-hydroxy acids. J Mol Catal B Enzymatic 97:150–155CrossRefGoogle Scholar
  52. 52.
    Kamila S, Zhu D, Biehl ER, Hua L (2006) Unexpected stereorecognition in nitrilase-catalyzed hydrolysis of β-hydroxy nitriles. Org Lett 8(20):4429–4431CrossRefGoogle Scholar
  53. 53.
    Zhu D, Ankati H, Mukherjee C, Yang Y, Biehl ER, Hua L (2007) Asymmetric reduction of β-ketonitriles with a recombinant carbonyl reductase and enzymatic transformation to optically pure β-hydroxy carboxylic acids. Org Lett 9(13):2561–2563CrossRefGoogle Scholar
  54. 54.
    Hu S, Kelly S, Lee S, Tao J, Flahive E (2006) Efficient chemoenzymatic synthesis of pelitrexol via enzymic differentiation of a remote stereocenter. Org Lett 8(8):1653–1655CrossRefGoogle Scholar
  55. 55.
    Truppo MD, Journet M, Shafiee A, Moore JC (2006) Optimization and scale-up of a lipase-catalyzed enzymatic resolution of an indole ester intermediate for a prostaglandin D2 (DP) receptor antagonist targeting allergic rhinitis. Org Proc Res Dev 10(3):592–598CrossRefGoogle Scholar
  56. 56.
    Martinez CA, Hu S, Dumond Y, Tao J, Kelleher P, Tully L (2008) Development of a chemoenzymatic manufacturing process for pregabalin. Org Proc Res Dev 12(3):392–398CrossRefGoogle Scholar
  57. 57.
    Tanaka K, Yoshida K, Sasaki C, Osano YT (2002) Practical asymmetric synthesis of the herbicide (s)-indanofan via lipase-catalyzed kinetic resolution of a diol and stereoselective acid-catalyzed hydrolysis of a chiral epoxide. J Org Chem 67(9):3131–3133CrossRefGoogle Scholar
  58. 58.
    Aleu J, Bustillo AJ, Hernandez-Galan R, Collado IG (2006) Biocatalysis applied to the synthesis of agrochemicals. Curr Org Chem 10(16):2037–2054CrossRefGoogle Scholar
  59. 59.
    Hu S, Martinez CA, Kline B, Yazbeck D, Tao J, Kucera DJ (2006) Efficient enzymatic process for the production of (2S)-4,4-difluoro-3,3-dimethyl-N-Boc-proline, a key intermediate in the synthesis of HIV protease inhibitors. Org Proc Res Dev 10(3):650–654CrossRefGoogle Scholar
  60. 60.
    Bergeron S, Chaplin DA, Edwards JH, Ellis BSW, Hill CL, Holt-Tiffin K, Knight JR, Mahoney T, Osborne AP, Ruecroft G (2006) Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org Proc Res Dev 10(3):661–665CrossRefGoogle Scholar
  61. 61.
    DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (gssm). J Am Chem Soc 125(38):11476–11477CrossRefGoogle Scholar
  62. 62.
    DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: Development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124(31):9024–9025CrossRefGoogle Scholar
  63. 63.
    Cooling FB, Fager SK, Fallon RD, Folsom PW, Gallagher FG, Gavagan JE, Hann EC, Herkes FE, Phillips RL, Sigmund A, Wagner LW, Wu W, DiCosimo R (2001) Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J Mol Catal B Enzymatic 11(4–6):295–306CrossRefGoogle Scholar
  64. 64.
    Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345(4):425–435CrossRefGoogle Scholar
  65. 65.
    Cantarella L, Gallifuoco A, Malandra A, Martínková L, Spera A, Cantarella M (2011) High-yield continuous production of nicotinic acid via nitrile hydratase–amidase cascade reactions using cascade csmrs. Enzyme Microb Technol 48(4–5):345–350CrossRefGoogle Scholar
  66. 66.
    Hann EC, Eisenberg A, Fager SK, Perkins NE, Gallagher FG, Cooper SM, Gavagan JE, Stieglitz B, Hennessey SM, DiCosimo R (1999) 5-cyanovaleramide production using immobilized Pseudomonas chlororaphis b23. Bioorg Med Chem 7(10):2239–2245CrossRefGoogle Scholar
  67. 67.
    Steinreiber A, Faber K (2001) Microbial epoxide hydrolases for preparative biotransformations. Curr Opin Biotechnol 12(6):552–558CrossRefGoogle Scholar
  68. 68.
    Kong X-D, Yu H-L, Yang S, Zhou J, Zeng B-B, Xu J-H (2015) Chemoenzymatic synthesis of (R)- and (S)-propranolol using an engineered epoxide hydrolase with a high turnover number. J Mol Catal B Enzymatic 122:275–281CrossRefGoogle Scholar
  69. 69.
    Edegger K, Mayer SF, Steinreiber A, Faber K (2004) Chemo-enzymatic enantio-convergent asymmetric synthesis of (R)-(+)-marmin. Tetrahedron 60(3):583–588CrossRefGoogle Scholar
  70. 70.
    Bottalla A-L, Ibrahim-Ouali M, Santelli M, Furstoss R, Archelas A (2007) Epoxide hydrolase-catalysed kinetic resolution of a spiroepoxide, a key building block of various 11-heterosteroids. Adv Synth Catal 349(7):1102–1110CrossRefGoogle Scholar
  71. 71.
    Deregnaucourt J, Archelas A, Barbirato F, Paris J-M, Furstoss R (2007) Enzymatic transformations 63. High-concentration two liquid-liquid phase Aspergillus niger epoxide hydrolase-catalysed resolution: Application to trifluoromethyl-substituted aromatic epoxides. Adv Synth Catal 349 (8–9):1405–1417Google Scholar
  72. 72.
    Zhu D, Mukherjee C, Hua L (2005) ‘Green’ synthesis of important pharmaceutical building blocks: Enzymatic access to enantiomerically pure α-chloroalcohols. Tetrahedron Asymmetry 16(19):3275–3278CrossRefGoogle Scholar
  73. 73.
    Zhu DM, Hyatt BA, Hua L (2009) Enzymatic hydrogen transfer reduction of α-chloro aromatic ketones catalyzed by a hyperthermophilic alcohol dehydrogenase. J Mol Catal B Enzym 56(4):272–276CrossRefGoogle Scholar
  74. 74.
    Pollard D, Truppo M, Pollard J, Chen C-y, Moore J (2006) Effective synthesis of (s)-3,5-bistrifluoromethylphenyl ethanol by asymmetric enzymatic reduction. Tetrahedron Asymmetry 17 (4):554–559Google Scholar
  75. 75.
    Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55(5):590–595CrossRefGoogle Scholar
  76. 76.
    Pan J, Zheng G-W, Ye Q, Xu J-H (2014) Optimization and scale-up of a bioreduction process for preparation of ethyl (S)-4-chloro-3-hydroxybutanoate. Org Proc Res Dev 18(6):739–743CrossRefGoogle Scholar
  77. 77.
    Yamamoto H, Matsuyama A, Kobayashi Y (2002) Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci Biotechnol Biochem 66(2):481–483CrossRefGoogle Scholar
  78. 78.
    Shen N-D, Ni Y, Ma H-M, Wang L-J, Li C-X, Zheng G-W, Zhang J, Xu J-H (2012) Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ACE) inhibitors in high space–time yield by a new reductase without external cofactors. Org Lett 14(8):1982–1985CrossRefGoogle Scholar
  79. 79.
    Ni Y, Li C-X, Zhang J, Shen N-D, Bornscheuer UT, Xu J-H (2011) Efficient reduction of ethyl 2-oxo-4-phenylbutyrate at 620 g L−1 by a bacterial reductase with broad substrate spectrum. Adv Synth Catal 353(8):1213–1217CrossRefGoogle Scholar
  80. 80.
    Ema T, Okita N, Ide S, Sakai T (2007) Highly enantioselective and efficient synthesis of methyl (R)-o-chloromandelate with recombinant E. coli: toward practical and green access to clopidogrel. Org Biomol Chem 5(8):1175–1176CrossRefGoogle Scholar
  81. 81.
    Xu Y-P, Guan YH, Yu H-L, Ni Y, Ma B-D, Xu J-H (2014) Improved o-chlorobenzoylformate bioreduction by stabilizing aldo-keto reductase YtBe with additives. J Mol Catal B Enzymatic 104:108–114CrossRefGoogle Scholar
  82. 82.
    Zhang D, Chen X, Chi J, Feng J, Wu Q, Zhu D (2015) Semi-rational engineering a carbonyl reductase for the enantioselective reduction of β-amino ketones. ACS Catal 5(4):2452–2457CrossRefGoogle Scholar
  83. 83.
    Chen X, Mei T, Cui Y, Chen Q, Liu X, Feng J, Wu Q, Zhu D (2015) Highly efficient synthesis of optically pure (S)-1-phenyl-1,2-ethanediol by a self-sufficient whole cell biocatalyst. ChemistryOpen 4(4):483–488CrossRefGoogle Scholar
  84. 84.
    Brenna E, Gatti FG, Manfredi A, Monti D, Parmeggiani F (2012) Enoate reductase-mediated preparation of methyl (S)-2-bromobutanoate, a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients. Org Proc Res Dev 16(2):262–268CrossRefGoogle Scholar
  85. 85.
    Bechtold M, Brenna E, Femmer C, Gatti FG, Panke S, Parmeggiani F, Sacchetti A (2012) Biotechnological development of a practical synthesis of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl)propanoate (EEHP): Over 100-fold productivity increase from yeast whole cells to recombinant isolated enzymes. Org Proc Res Dev 16(2):269–276CrossRefGoogle Scholar
  86. 86.
    Fryszkowska A, Toogood H, Sakuma M, Gardiner JM, Stephens GM, Scrutton NS (2009) Asymmetric reduction of activated alkenes by pentaerythritol petranitrate peductase: specificity and control of stereochemical outcome by reaction optimisation. Adv Synth Catal 351:2976–2990CrossRefGoogle Scholar
  87. 87.
    Gao X, Ren J, Wu Q, Zhu D (2012) Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme Microb Technol 51(1):26–34CrossRefGoogle Scholar
  88. 88.
    Padhi SK, Bougioukou DJ, Stewart JD (2009) Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants. J Am Chem Soc 131(9):3271–3280CrossRefGoogle Scholar
  89. 89.
    Chen X, Gao X, Wu Q, Zhu D (2012) Synthesis of optically active dihydrocarveol via a stepwise or one-pot enzymatic reduction of (R)- and (S)-carvone. Tetrahedron Asymmetry 23(10):734–738CrossRefGoogle Scholar
  90. 90.
    Hanson RL, Davis BL, Goldberg SL, Johnston RM, Parker WL, Tully TP, Montana MA, Patel RN (2008) Enzymatic preparation of a d-amino acid from a racemic amino acid or keto acid. Org Proc Res Dev 12(6):1119–1129CrossRefGoogle Scholar
  91. 91.
    Paul CE, Rodríguez-Mata M, Busto E, Lavandera I, Gotor-Fernández V, Gotor V, García-Cerrada S, Mendiola J, de Frutos Ó, Collado I (2014) Transaminases applied to the synthesis of high added-value enantiopure amines. Org Proc Res Dev 18(6):788–792CrossRefGoogle Scholar
  92. 92.
    Simon RC, Grischek B, Zepeck F, Steinreiber A, Belaj F, Kroutil W (2012) Regio- and stereoselective monoamination of diketones without protecting groups. Angew Chem 124(27):6817–6820CrossRefGoogle Scholar
  93. 93.
    Payer SE, Schrittwieser JH, Grischek B, Simon RC, Kroutil W (2016) Regio- and stereoselective biocatalytic monoamination of a triketone enables asymmetric synthesis of both enantiomers of the pyrrolizidine alkaloid xenovenine employing transaminases. Adv Synth Catal 358(3):444–451CrossRefGoogle Scholar
  94. 94.
    Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329(5989):305–309CrossRefGoogle Scholar
  95. 95.
    Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH Verlag GmbH&Co KGaA, WeinheimGoogle Scholar
  96. 96.
    Menzel A, Werner H, Altenbuchner J, Groeger H (2004) From enzymes to “designer bugs” in reductive amination: A new process for the synthesis of L-tert-leucine using a whole cell-catalyst. Eng Life Sci 4(6):573–576CrossRefGoogle Scholar
  97. 97.
    Gao X, Ma Q, Zhu H (2015) Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl Microbiol Biotechnol 99(8):3341–3349CrossRefGoogle Scholar
  98. 98.
    Hanson RL, Johnston RM, Goldberg SL, Parker WL, Goswami A (2013) Enzymatic preparation of an R-amino acid intermediate for a γ-secretase inhibitor. Org Proc Res Dev 17(4):693–700CrossRefGoogle Scholar
  99. 99.
    Tao F, Zhang Y, Ma C, Xu P (2011) One-pot bio-synthesis: N-acetyl-D-neuraminic acid production by a powerful engineered whole-cell catalyst. Sci Reports 1:142CrossRefGoogle Scholar
  100. 100.
    Xu P, Qiu JH, Zhang YN, Chen J, Wang PG, Yan B, Song J, Xi RM, Deng ZX, Ma CQ (2007) Efficient whole-cell biocatalytic synthesis of N-acetyl-D-neuraminic acid. Adv Synth Catal 349(10):1614–1618CrossRefGoogle Scholar
  101. 101.
    Castillo JA, Guérard-Hélaine C, Gutiérrez M, Garrabou X, Sancelme M, Schürmann M, Inoue T, Hélaine V, Charmantray F, Gefflaut T, Hecquet L, Joglar J, Clapés P, Sprenger GA, Lemaire M (2010) A mutant D-fructose-6-phosphate aldolase (Ala129Ser) with improved affinity towards dihydroxyacetone for the synthesis of polyhydroxylated compounds. Adv Synth Catal 352(6):1039–1046CrossRefGoogle Scholar
  102. 102.
    Goldberg SL, Goswami A, Guo Z, Chan Y, Lo ET, Lee A, Truc VC, Natalie KJ, Hang C, Rossano LT, Schmidt MA (2015) Preparation of β-hydroxy-α-amino acid using recombinant D-threonine aldolase. Org Proc Res Dev 19(9):1308–1316CrossRefGoogle Scholar
  103. 103.
    Lanfranchi E, Steiner K, Glieder A, Hajnal I, Sheldon RA, van Pelt S, Winkler M (2013) Mini-review: recent developments in hydroxynitrile lyases for industrial biotechnology. Recent Pat Biotechnol 7(3):197–206CrossRefGoogle Scholar
  104. 104.
    Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc 135(29):10863–10869CrossRefGoogle Scholar
  105. 105.
    Leisch H, Grosse S, Iwaki H, Hasegawa Y, Lau PCK (2011) Cyclohexylamine oxidase as a useful biocatalyst for the kinetic resolution and dereacemization of amines. Can J Chem 90(1):39–45CrossRefGoogle Scholar
  106. 106.
    Li G, Ren J, Yao P, Duan Y, Zhang H, Wu Q, Feng J, Lau PCK, Zhu D (2014) Deracemization of 2-methyl-1,2,3,4-tetrahydroquinoline using mutant cyclohexylamine oxidase obtained by iterative saturation mutagenesis. ACS Catal 4(3):903–908CrossRefGoogle Scholar
  107. 107.
    Beard TM, Turner NJ (2002) Deracemisation and stereoinversion of α-amino acids using D-amino acid oxidase and hydride reducing agents. Chem Commun 3:246–247CrossRefGoogle Scholar
  108. 108.
    Scheller PN, Fademrecht S, Hofelzer S, Pleiss J, Leipold F, Turner NJ, Nestl BM, Hauer B (2014) Enzyme toolbox: novel enantiocomplementary imine reductases. ChemBioChem 15(15):2201–2204CrossRefGoogle Scholar
  109. 109.
    Grogan G, Turner NJ (2016) Inspired by nature: NADPH-dependent imine reductases (IREDs) as catalysts for the preparation of chiral amines. Chem A Eur J 22(6):1900–1907CrossRefGoogle Scholar
  110. 110.
    Hussain S, Leipold F, Man H, Wells E, France SP, Mulholland KR, Grogan G, Turner NJ (2015) An (R)-imine reductase biocatalyst for the asymmetric reduction of cyclic imines. ChemCatChem 7(4):579–583CrossRefGoogle Scholar
  111. 111.
    Leipold F, Hussain S, Ghislieri D, Turner NJ (2013) Asymmetric reduction of cyclic imines catalyzed by a whole-cell biocatalyst containing an (S)-imine reductase. ChemCatChem 5(12):3505–3508CrossRefGoogle Scholar
  112. 112.
    Classen T, Korpak M, Schölzel M, Pietruszka J (2014) Stereoselective enzyme cascades: an efficient synthesis of chiral γ-butyrolactones. ACS Catal 4(5):1321–1331CrossRefGoogle Scholar
  113. 113.
    Brenna E, Crotti M, Gatti FG, Monti D, Parmeggiani F, Pugliese A, Santangelo S (2015) Multi-enzyme cascade synthesis of the most odorous stereoisomers of the commercial odorant muguesia®. J Mol Catal B: Enzymatic 114:37–41CrossRefGoogle Scholar
  114. 114.
    Yao P, Wang L, Yuan J, Cheng L, Jia R, Xie M, Feng J, Wang M, Wu Q, Zhu D (2015) Efficient biosynthesis of ethyl (R)-3-hydroxyglutarate through a one-pot bienzymatic cascade of halohydrin dehalogenase and nitrilase. ChemCatChem 7(9):1438–1444CrossRefGoogle Scholar
  115. 115.
    Sosedov O, Matzer K, Bürger S, Kiziak C, Baum S, Altenbuchner J, Chmura A, van Rantwijk F, Stolz A (2009) Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandelic amide from benzaldehyde and cyanide. Adv Synth Catal 351(10):1531–1538CrossRefGoogle Scholar
  116. 116.
    Pennec A, Hollmann F, Smit MS, Opperman DJ (2015) One-pot conversion of cycloalkanes to lactones. ChemCatChem 7(2):236–239CrossRefGoogle Scholar
  117. 117.
    Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz H-G, Bornscheuer UT (2015) An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew Chem Int Ed 54(9):2784–2787CrossRefGoogle Scholar
  118. 118.
    Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W (2014) Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid. Angew Chem Int Ed 53(51):14153–14157CrossRefGoogle Scholar
  119. 119.
    Ankati H, Yang Y, Zhu D, Biehl ER, Hua L (2008) Synthesis of optically pure 2-azido-1-arylethanols with isolated enzymes and conversion to triazole-containing β-blocker analogues employing click chemistry. J Org Chem 73(16):6433–6436CrossRefGoogle Scholar
  120. 120.
    Cuetos A, Bisogno FR, Lavandera I, Gotor V (2013) Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chem Commun 49(26):2625–2627CrossRefGoogle Scholar
  121. 121.
    Gröger H, Hummel W (2014) Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr Opin Chem Biol 19:171–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2016

Authors and Affiliations

  1. 1.National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
  2. 2.DuPont Industrial Biosciences, Experimental StationWilmingtonUSA

Personalised recommendations