Skip to main content

The Modeling and Identification of Lithium-Ion Battery System

  • Chapter
  • First Online:
  • 1213 Accesses

Abstract

Power battery often serves as energy storage in electrified vehicle. Battery performance directly affects fuel economy and mobility of electric vehicles. A battery cell usually consists of positive and negative electrodes, an electrolyte, and a separating plate (insulating porous material). The electrode materials determine the type and fundamental performance of the battery: electrolyte for ionic conduction; separator for electrically isolating the positive and negative electrodes to avoid short circuit.

This is a preview of subscription content, log in via an institution.

References

  1. Lukic, S. M., Cao, J., Bansal, R. C., Rodriguez, F., & Emadi, A. (2008). Energy storage systems for automotive applications. IEEE Transactions on Industrial Electronics, 55(6), 2258–2267.

    Article  Google Scholar 

  2. Mi, C., Masrur, M. A., & Gao, D. W. (2011). Hybrid electric vehicles: Principles and applications with practical perspectives. Hoboken: Wiley.

    Book  Google Scholar 

  3. Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: A review. Energy & Environmental Science, 4(9), 3243–3262.

    Article  Google Scholar 

  4. Accessed by February 02, 2012. http://www.nissanusa.com/leaf-electric-car/index

  5. Accessed by February 22, 2012. http://gm-volt.com

  6. Nagaura, T., & Tozawa, K. (1990). Lithium ion rechargeable battery. Prog. Batteries Solar Cells, 9, 209.

    Google Scholar 

  7. Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359–367.

    Article  Google Scholar 

  8. Accessed by August 08, 2011. http://dmse.mit.edu/faculty/profile/chiang

  9. Accessed by 08 September, 2011. http://www.me.utexas.edu/directory/faculty/goodenough/john

  10. Accessed by June 11, 2011. http://www.a123systems.com

  11. Accessed by June 11, 2011. http://www.lgcpi.com

  12. Accessed by March 12, 2011. http://us.sanyo.com/Industrial-Batteries

  13. Accessed by March 03, 2012. http://www.mgl.com.cn/newEbiz1/EbizPortalFG/portal/html/index.html

  14. Accessed by March 03, 2012. http://bydit.com/doce/products/Li-EnergyProducts

  15. Accessed by March 05, 2012. http://www.limn2o4.com

  16. Accessed by January 08, 2012. http://en.wikipedia.org/wiki/Lithium-ion_battery

  17. Gu, H. B., Jun, D. K., Park, G. C., Jin, B., & Jin, E. M. (2007). Nanosized LiFePO4 cathode materials for lithium ion batteries. Journal of Nanoscience and Nanotechnology, 7(11), 3980–3984.

    Article  Google Scholar 

  18. Accessed by February 09, 2012. http://en.wikipedia.org/wiki/Lithium-titanate_battery

  19. Alamgir, M., & Sastry, A. M. (2008). Efficient batteries for transportation applications (No. 2008-21-0017). SAE Technical Paper.

    Google Scholar 

  20. Dinger, A., Martin, R., Mosquet, X., Rabl, M., Rizoulis, D., Russo, M., et al. (2010). Batteries for electric cars: Challenges, opportunities, and the outlook to 2020. Boston: Boston Consulting Group.

    Google Scholar 

  21. Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451(7179), 652–657.

    Article  Google Scholar 

  22. Tarascon, J. M. (2010). Key challenges in future Li-battery research. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1923), 3227–3241.

    Article  Google Scholar 

  23. Accessed by January 17, 2012. http://web.mit.edu/eel

  24. Chaturvedi, N. A., Klein, R., Christensen, J., Ahmed, J., & Kojic, A. (2010). Algorithms for advanced battery-management systems. IEEE Control Systems, 30(3), 49–68.

    Article  MathSciNet  Google Scholar 

  25. Doyle, M., Fuller, T. F., & Newman, J. (1993). Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical Society, 140(6), 1526–1533.

    Article  Google Scholar 

  26. Fuller, T. F., Doyle, M., & Newman, J. (1994). Simulation and optimization of the dual lithium ion insertion cell. Journal of the Electrochemical Society, 141(1), 1–10.

    Article  Google Scholar 

  27. Doyle, M., & Fuentes, Y. (2003). Computer simulations of a lithium-ion polymer battery and implications for higher capacity next-generation battery designs. Journal of the Electrochemical Society, 150(6), A706–A713.

    Article  Google Scholar 

  28. Doyle, M., Fuller, T. F., & Newman, J. (1994). The importance of the lithium ion transference number in lithium/polymer cells. Electrochimica Acta, 39(13), 2073–2081.

    Article  Google Scholar 

  29. Fuller, T. F., Doyle, M., & Newman, J. (1994). Relaxation phenomena in lithium-ion-insertion cells. Journal of the Electrochemical Society, 141(4), 982–990.

    Article  Google Scholar 

  30. Gu, W. B., & Wang, C. Y. (2000). Thermal and electrochemical coupled modeling of a lithium-ion cell. Proc Electrochem Soc, 99, 748–762.

    Google Scholar 

  31. Newman, J., & Thomas-Alyea, K. E. (2012). Electrochemical systems. Hoboken: Wiley.

    Google Scholar 

  32. Doyle, M., Newman, J., Gozdz, A. S., Schmutz, C. N., & Tarascon, J. M. (1996). Comparison of modeling predictions with experimental data from plastic lithium ion cells. Journal of the Electrochemical Society, 143(6), 1890–1903.

    Article  Google Scholar 

  33. Smith, K. A., Rahn, C. D., & Wang, C. Y. (2007). Control oriented 1D electrochemical model of lithium ion battery. Energy Conversion and Management, 48(9), 2565–2578.

    Article  Google Scholar 

  34. Wang, C. Y., & Srinivasan, V. (2002). Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling. Journal of Power Sources, 110(2), 364–376.

    Article  Google Scholar 

  35. Rahn, C. D., & Wang, C. Y. (2013). Battery systems engineering. Hoboken: Wiley.

    Book  Google Scholar 

  36. Schmidt, A. P., Bitzer, M., Imre, Á. W., & Guzzella, L. (2010). Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell. Journal of Power Sources, 195(15), 5071–5080.

    Article  Google Scholar 

  37. Moura, S. J., Stein, J. L., & Fathy, H. K. (2013). Battery-health conscious power management in plug-in hybrid electric vehicles via electrochemical modeling and stochastic control. IEEE Transactions on Control Systems Technology, 21(3), 679–694.

    Article  Google Scholar 

  38. Johnson, V. H. (2002). Battery performance models in ADVISOR. Journal of Power Sources, 110(2), 321–329.

    Article  Google Scholar 

  39. Junping, W., Quanshi, C., & Binggang, C. (2006). Support vector machine based battery model for electric vehicles. Energy Conversion and Management, 47(7), 858–864.

    Article  Google Scholar 

  40. Wang, J. P., Xu, L., Guo, J. G., & Ding, L. (2009). Modelling of a battery pack for electric vehicles using a stochastic fuzzy neural network. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(1), 27–35.

    Article  Google Scholar 

  41. Plett, G. L. (2004). Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. Journal of Power Sources, 134(2), 262–276.

    Article  Google Scholar 

  42. Liaw, B. Y., Nagasubramanian, G., Jungst, R. G., & Doughty, D. H. (2004). Modeling of lithium ion cells—A simple equivalent-circuit model approach. Solid State Ionics, 175(1), 835–839.

    Google Scholar 

  43. Dubarry, M., Vuillaume, N., & Liaw, B. Y. (2009). From single cell model to battery pack simulation for Li-ion batteries. Journal of Power Sources, 186(2), 500–507.

    Article  Google Scholar 

  44. Chiang, Y. H., Sean, W. Y., & Ke, J. C. (2011). Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles. Journal of Power Sources, 196(8), 3921–3932.

    Article  Google Scholar 

  45. Dubarry, M., & Liaw, B. Y. (2007). Development of a universal modeling tool for rechargeable lithium batteries. Journal of Power Sources, 174(2), 856–860.

    Article  Google Scholar 

  46. Hu, Y., Yurkovich, S., Guezennec, Y., & Yurkovich, B. J. (2009). A technique for dynamic battery model identification in automotive applications using linear parameter varying structures. Control Engineering Practice, 17(10), 1190–1201.

    Article  Google Scholar 

  47. Hu, Y., & Yurkovich, S. (2011). Linear parameter varying battery model identification using subspace methods. Journal of Power Sources, 196(5), 2913–2923.

    Article  Google Scholar 

  48. Andre, D., Meiler, M., Steiner, K., Walz, H., Soczka-Guth, T., & Sauer, D. U. (2011). Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. Journal of Power Sources, 196(12), 5349–5356.

    Article  Google Scholar 

  49. Verbrugge, M., & Tate, E. (2004). Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena. Journal of Power Sources, 126(1), 236–249.

    Article  Google Scholar 

  50. Verbrugge, M., & Koch, B. (2006). Generalized recursive algorithm for adaptive multiparameter regression application to lead acid, nickel metal hydride, and lithium-ion batteries. Journal of the Electrochemical Society, 153(1), A187–A201.

    Article  Google Scholar 

  51. Verbrugge, M. (2007). Adaptive, multi-parameter battery state estimator with optimized time-weighting factors. Journal of Applied Electrochemistry, 37(5), 605–616.

    Article  Google Scholar 

  52. Hu, Y., Yurkovich, S., Guezennec, Y., & Yurkovich, B. J. (2011). Electro-thermal battery model identification for automotive applications. Journal of Power Sources, 196(1), 449–457.

    Article  Google Scholar 

  53. Affanni, A., Bellini, A., Franceschini, G., Guglielmi, P., & Tassoni, C. (2005). Battery choice and management for new-generation electric vehicles. IEEE Transactions on Industrial Electronics, 52(5), 1343–1349.

    Article  Google Scholar 

  54. Kutluay, K., Cadirci, Y., Özkazanç, Y. S., & Cadirci, I. (2005). A new online state-of-charge estimation and monitoring system for sealed lead-acid batteries in telecommunication power supplies. IEEE Transactions on Industrial Electronics, 52(5), 1315–1327.

    Article  Google Scholar 

  55. Chatzakis, J., Kalaitzakis, K., Voulgaris, N. C., & Manias, S. N. (2003). Designing a new generalized battery management system. IEEE Transactions on Industrial Electronics, 50(5), 990–999.

    Article  Google Scholar 

  56. Elena, A. (2010). Lithium-ion batteries for electric cars: Opportunities and challenges. Presentation from Honda R&D Europe (Deutschland) GmbH.

    Google Scholar 

  57. Hu, X., Li, S., & Peng, H. (2012). A comparative study of equivalent circuit models for Li-ion batteries. Journal of Power Sources, 198, 359–367.

    Article  Google Scholar 

  58. Hu, X., Li, S., Peng, H., & Sun, F. (2012). Robustness analysis of state-of-charge estimation methods for two types of Li-ion batteries. Journal of Power Sources, 217, 209–219.

    Article  Google Scholar 

  59. Ljung, L. (1998). System identification (pp. 163–173). Boston: Birkhäuser.

    Google Scholar 

  60. Manual, P. B. T. (1993). Revision 3. DOE/ID-10597, February.

    Google Scholar 

  61. Pan, L., & Pan, Y. (2003). System identification and modeling. Beijing: Chemical Industry Press.

    Google Scholar 

  62. Grewal, M. S. (2011). Kalman filtering (pp. 705–708). Berlin: Springer.

    Google Scholar 

  63. Hu, X. S., Sun, F. C., & Zou, Y. (2011). Online model identification of lithium-ion battery for electric vehicles. Journal of Central South University of Technology, 18, 1525–1531.

    Article  Google Scholar 

  64. Hu, X., Sun, F., & Zou, Y. (2013). Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles. Simulation Modelling Practice and Theory, 34, 1–11.

    Article  Google Scholar 

  65. Del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. C., & Harley, R. G. (2008). Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195.

    Article  Google Scholar 

  66. Krohling, R. A., & dos Santos Coelho, L. (2006). Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(6), 1407–1416.

    Article  Google Scholar 

  67. Wang, Y., & Cai, Z. (2009). A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems. Frontiers of Computer Science in China, 3(1), 38–52.

    Article  Google Scholar 

  68. Hu, X. (2012). Li-ion battery identification, optimization and state estimation for electrified vehicles. Beijing: Beijing Institute of Technology.

    Google Scholar 

  69. Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288.

    Article  Google Scholar 

  70. Meng, X. (2009). Electric vehicle battery life model and performance evaluation. Beijing: Beijing Institute of Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Beijing Institute of Technology Press, Beijing and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zou, Y., Li, J., Hu, X., Chamaillard, Y. (2018). The Modeling and Identification of Lithium-Ion Battery System. In: Modeling and Control of Hybrid Propulsion System for Ground Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53673-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53673-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53671-1

  • Online ISBN: 978-3-662-53673-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics