Standard Security Does Not Imply Indistinguishability Under Selective Opening

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9986)

Abstract

In a selective opening attack (SOA) on an encryption scheme, the adversary is given a collection of ciphertexts and she selectively chooses to see some subset of them “opened”, meaning that the messages and the encryption randomness are revealed to her. A scheme is SOA secure if the data contained in the unopened ciphertexts remains hidden. A fundamental question is whether every CPA secure scheme is necessarily also SOA secure. The work of Bellare et al. (EUROCRYPT’12) gives a partial negative answer by showing that some CPA secure schemes do not satisfy a simulation-based definition of SOA security called SIM-SOA. However, until now, it remained possible that every CPA-secure scheme satisfies an indistinguishability-based definition of SOA security called IND-SOA.

In this work, we resolve the above question in the negative and construct a highly contrived encryption scheme which is CPA (and even CCA) secure but is not IND-SOA secure. In fact, it is broken in a very obvious sense by a selective opening attack as follows. A random value is secret-shared via Shamir’s scheme so that any t out of n shares reveal no information about the shared value. The n shares are individually encrypted under a common public key and the n resulting ciphertexts are given to the adversary who selectively chooses to see t of the ciphertexts opened. Counter-intuitively, by the specific properties of our encryption scheme, this suffices for the adversary to completely recover the shared value. Our contrived scheme relies on strong assumptions: public-coin differing inputs obfuscation and a certain type of correlation intractable hash functions.

We also extend our negative result to the setting of SOA attacks with key opening (IND-SOA-K) where the adversary is given a collection of ciphertexts under different public keys and selectively chooses to see some subset of the secret keys.

References

  1. 1.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowledge. In: Proceedings of 44th Symposium on Foundations of Computer Science, FOCS 2003, 11–14 October 2003, Cambridge, MA, USA, pp. 384–393. IEEE Computer Society (2003). http://dx.doi.org/10.1109/SFCS.2003.1238212
  3. 3.
    Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_38 CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_1 CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs obfuscation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 792–821. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_28 CrossRefGoogle Scholar
  6. 6.
    Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 522–539. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8_31 CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfuscated pseudorandom functions. IACR ePrint Archive, report 2015/334 (2015). http://eprint.iacr.org/2015/334
  8. 8.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: Proceedings of STOC 1998, pp. 209–218. ACM (1998)Google Scholar
  9. 9.
    Cohen, A., Holmgren, J., Vaikuntanathan, V.: Publicly verifiable software watermarking. IACR ePrint Archive, report 2015/373 (2015). http://eprint.iacr.org/2015/373
  10. 10.
    Dodis, Y., Ristenpart, T., Vadhan, S.: Randomness condensers for efficiently samplable, seed-dependent sources. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 618–635. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9_35 CrossRefGoogle Scholar
  11. 11.
    Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: Proceedings of FOCS 1999, pp. 523–534. IEEE Computer Society (1999)Google Scholar
  12. 12.
    Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_20 CrossRefGoogle Scholar
  13. 13.
    Fuchsbauer, G., Heuer, F., Kiltz, E., Pietrzak, K.: Standard security does imply security against selective opening for markov distributions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 282–305. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9_12 CrossRefGoogle Scholar
  14. 14.
    Fujisaki, E.: All-but-many encryption - a new framework for fully-equipped uc commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 426–447. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_23 Google Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp. 40–49. IEEE Computer Society (2013). http://dx.doi.org/10.1109/FOCS.2013.13
  16. 16.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_29 CrossRefGoogle Scholar
  17. 17.
    Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6_19 CrossRefGoogle Scholar
  18. 18.
    Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: constructions from general assumptions and efficient selective opening chosen ciphertext security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_4 CrossRefGoogle Scholar
  19. 19.
    Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_14 CrossRefGoogle Scholar
  20. 20.
    Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_25 CrossRefGoogle Scholar
  21. 21.
    Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_23 CrossRefGoogle Scholar
  22. 22.
    Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. IACR ePrint Archive, report 2014/942 (2014). http://eprint.iacr.org/2014/942
  23. 23.
    Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 668–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_26 CrossRefGoogle Scholar
  24. 24.
    Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 378–400. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_15 CrossRefGoogle Scholar
  25. 25.
    Marcedone, A., Orlandi, C.: Obfuscation \(\Rightarrow \) (IND-CPA security \(\nRightarrow \) circular security). In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 77–90. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10879-7_5 Google Scholar
  26. 26.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of SODA 2001, pp. 448–457. ACM/SIAM (2001)Google Scholar
  27. 27.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_31 CrossRefGoogle Scholar
  28. 28.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of STOC 2008, pp. 187–196. ACM (2008)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.PARC, a Xerox CompanyPalo AltoUSA
  3. 3.Northeastern UniversityMassachusettsUSA

Personalised recommendations