How to Share a Secret, Infinitely

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9986)

Abstract

Secret sharing schemes allow a dealer to distribute a secret piece of information among several parties such that only qualified subsets of parties can reconstruct the secret. The collection of qualified subsets is called an access structure. The best known example is the k-threshold access structure, where the qualified subsets are those of size at least k. When \(k=2\) and there are n parties, there are schemes where the size of the share each party gets is roughly \(\log n\) bits, and this is tight even for secrets of 1 bit. In these schemes, the number of parties n must be given in advance to the dealer.

In this work we consider the case where the set of parties is not known in advance and could potentially be infinite. Our goal is to give the \({t}^{th}\) party arriving the smallest possible share as a function of t. Our main result is such a scheme for the k-threshold access structure where the share size of party t is \((k-1)\cdot \log t + \mathsf {poly}(k)\cdot o(\log t)\). For \(k=2\) we observe an equivalence to prefix codes and present matching upper and lower bounds of the form \(\log t + \log \log t + \log \log \log t + O(1)\). Finally, we show that for any access structure there exists such a secret sharing scheme with shares of size \(2^{t-1}\).

References

  1. 1.
    Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis, Technion - Israel Institute of Technology (1996). http://www.cs.bgu.ac.il/beimel/Papers/thesis.ps
  2. 2.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: 16th Annual IEEE Conference on Computational Complexity, CCC, pp. 188–202 (2001)Google Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)Google Scholar
  5. 5.
    Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Benaloh, J.C., Rudich, S.: Unpublished, private Communication with Steven Rudich. (1989)Google Scholar
  7. 7.
    Bentley, J.L., Yao, A.C.: An almost optimal algorithm for unbounded searching. Inf. Process. Lett. 5(3), 82–87 (1976)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS National Computer Conference, vol. 22, pp. 313–317 (1979)Google Scholar
  9. 9.
    Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear size alphabet. Electronic Colloquium on Computational Complexity (ECCC) 23, 131 (2016). http://eccc.hpi-web.de/report/2016/131, to appear in TCC 2016B
  10. 10.
    Boppana, R.B.: Threshold functions and bounded depth monotone circuits. J. Comput. Syst. Sci. 32(2), 222–229 (1986)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Pueyo, C.I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)MATHGoogle Scholar
  14. 14.
    Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Csirmaz, L., Tardos, G.: On-line secret sharing. Des. Codes Crypt. 63(1), 127–147 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dodis, Y., Patrascu, M., Thorup, M.: Changing base without losing space. In: STOC, pp. 593–602 (2010)Google Scholar
  17. 17.
    Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Even, S., Rodeh, M.: Economical encoding of commas between strings. Commun. ACM 21(4), 315–317 (1978)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Friedman, J.: Constructing \({O}(n \log n)\) size monotone formulae for the \(k\)-th threshold function of \(n\) boolean variables. SIAM J. Comput. 15(3), 641–654 (1986)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Geographic, N.: NASA declares end to deep impact comet mission. http://news.nationalgeographic.com/news/2013/09/130920-deep-impact-ends-comet-mission-nasa-jpl/. Acccessed 07 Feb 2016
  21. 21.
    Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Ito, M., Saito, A., Nishizeki, T.: Multiple assignment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4), 596–603 (1992)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Karchmer, M., Wigderson, A.: On span programs. In: 8th Annual Structure in Complexity Theory Conference, pp. 102–111 (1993)Google Scholar
  25. 25.
    Kilian, J., Nisan, N.: Unpublished (1990). see [12]Google Scholar
  26. 26.
    Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432 (2008)Google Scholar
  27. 27.
    Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273. Springer, Heidelberg (2014)Google Scholar
  28. 28.
    Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Malkin, T., Micciancio, D., Miner, S.K.: Efficient generic forward-secure signatures with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Pagh, R., Segev, G., Wieder, U.: How to approximate a set without knowing its size in advance. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 80–89 (2013)Google Scholar
  31. 31.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Vinod, V., Narayanan, A., Srinathan, K., Pandu Rangan, C., Kim, K.: On the power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Wikipedia: IPv4 address exhaustion. https://en.wikipedia.org/wiki/IPv4_address_exhaustion. Acccessed 07 Feb 2016
  34. 34.
    Wikipedia: Year 2000 problem. https://en.wikipedia.org/wiki/Year_2000_problem. Acccessed 07 Feb 2016
  35. 35.
    Yao, A.C.: Unpublished, mentioned in [2]. See also [32]Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations