TCC 2016: Theory of Cryptography pp 485-514

# How to Share a Secret, Infinitely

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9986)

## Abstract

Secret sharing schemes allow a dealer to distribute a secret piece of information among several parties such that only qualified subsets of parties can reconstruct the secret. The collection of qualified subsets is called an access structure. The best known example is the k-threshold access structure, where the qualified subsets are those of size at least k. When $$k=2$$ and there are n parties, there are schemes where the size of the share each party gets is roughly $$\log n$$ bits, and this is tight even for secrets of 1 bit. In these schemes, the number of parties n must be given in advance to the dealer.

In this work we consider the case where the set of parties is not known in advance and could potentially be infinite. Our goal is to give the $${t}^{th}$$ party arriving the smallest possible share as a function of t. Our main result is such a scheme for the k-threshold access structure where the share size of party t is $$(k-1)\cdot \log t + \mathsf {poly}(k)\cdot o(\log t)$$. For $$k=2$$ we observe an equivalence to prefix codes and present matching upper and lower bounds of the form $$\log t + \log \log t + \log \log \log t + O(1)$$. Finally, we show that for any access structure there exists such a secret sharing scheme with shares of size $$2^{t-1}$$.

### References

1. 1.
Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis, Technion - Israel Institute of Technology (1996). http://www.cs.bgu.ac.il/beimel/Papers/thesis.ps
2. 2.
Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)
3. 3.
Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: 16th Annual IEEE Conference on Computational Complexity, CCC, pp. 188–202 (2001)Google Scholar
4. 4.
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)Google Scholar
5. 5.
Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)Google Scholar
6. 6.
Benaloh, J.C., Rudich, S.: Unpublished, private Communication with Steven Rudich. (1989)Google Scholar
7. 7.
Bentley, J.L., Yao, A.C.: An almost optimal algorithm for unbounded searching. Inf. Process. Lett. 5(3), 82–87 (1976)
8. 8.
Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS National Computer Conference, vol. 22, pp. 313–317 (1979)Google Scholar
9. 9.
Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear size alphabet. Electronic Colloquium on Computational Complexity (ECCC) 23, 131 (2016). http://eccc.hpi-web.de/report/2016/131, to appear in TCC 2016B
10. 10.
Boppana, R.B.: Threshold functions and bounded depth monotone circuits. J. Comput. Syst. Sci. 32(2), 222–229 (1986)
11. 11.
Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995)
12. 12.
Pueyo, C.I., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)
13. 13.
Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)
14. 14.
Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)
15. 15.
Csirmaz, L., Tardos, G.: On-line secret sharing. Des. Codes Crypt. 63(1), 127–147 (2012)
16. 16.
Dodis, Y., Patrascu, M., Thorup, M.: Changing base without losing space. In: STOC, pp. 593–602 (2010)Google Scholar
17. 17.
Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)
18. 18.
Even, S., Rodeh, M.: Economical encoding of commas between strings. Commun. ACM 21(4), 315–317 (1978)
19. 19.
Friedman, J.: Constructing $${O}(n \log n)$$ size monotone formulae for the $$k$$-th threshold function of $$n$$ boolean variables. SIAM J. Comput. 15(3), 641–654 (1986)
20. 20.
Geographic, N.: NASA declares end to deep impact comet mission. http://news.nationalgeographic.com/news/2013/09/130920-deep-impact-ends-comet-mission-nasa-jpl/. Acccessed 07 Feb 2016
21. 21.
Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)Google Scholar
22. 22.
Ito, M., Saito, A., Nishizeki, T.: Multiple assignment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993)
23. 23.
Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4), 596–603 (1992)
24. 24.
Karchmer, M., Wigderson, A.: On span programs. In: 8th Annual Structure in Complexity Theory Conference, pp. 102–111 (1993)Google Scholar
25. 25.
Kilian, J., Nisan, N.: Unpublished (1990). see [12]Google Scholar
26. 26.
Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432 (2008)Google Scholar
27. 27.
Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273. Springer, Heidelberg (2014)Google Scholar
28. 28.
Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994)Google Scholar
29. 29.
Malkin, T., Micciancio, D., Miner, S.K.: Efficient generic forward-secure signatures with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)
30. 30.
Pagh, R., Segev, G., Wieder, U.: How to approximate a set without knowing its size in advance. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 80–89 (2013)Google Scholar
31. 31.
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
32. 32.
Vinod, V., Narayanan, A., Srinathan, K., Pandu Rangan, C., Kim, K.: On the power of computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003)
33. 33.
34. 34.
Wikipedia: Year 2000 problem. https://en.wikipedia.org/wiki/Year_2000_problem. Acccessed 07 Feb 2016
35. 35.