Secure Obfuscation in a Weak Multilinear Map Model

  • Sanjam Garg
  • Eric Miles
  • Pratyay Mukherjee
  • Amit Sahai
  • Akshayaram Srinivasan
  • Mark Zhandry
Conference paper

DOI: 10.1007/978-3-662-53644-5_10

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9986)
Cite this paper as:
Garg S., Miles E., Mukherjee P., Sahai A., Srinivasan A., Zhandry M. (2016) Secure Obfuscation in a Weak Multilinear Map Model. In: Hirt M., Smith A. (eds) Theory of Cryptography. TCC 2016. Lecture Notes in Computer Science, vol 9986. Springer, Berlin, Heidelberg

Abstract

All known candidate indistinguishability obfuscation (iO) schemes rely on candidate multilinear maps. Until recently, the strongest proofs of security available for iO candidates were in a generic model that only allows “honest” use of the multilinear map. Most notably, in this model the zero-test procedure only reveals whether an encoded element is 0, and nothing more.

However, this model is inadequate: there have been several attacks on multilinear maps that exploit extra information revealed by the zero-test procedure. In particular, Miles, Sahai and Zhandry (Crypto’16) recently gave a polynomial-time attack on several iO candidates when instantiated with the multilinear maps of Garg, Gentry, and Halevi (Eurocrypt’13), and also proposed a new “weak multilinear map model” that captures all known polynomial-time attacks on GGH13.

In this work, we give a new iO candidate which can be seen as a small modification or generalization of the original candidate of Garg, Gentry, Halevi, Raykova, Sahai, and Waters (FOCS’13). We prove its security in the weak multilinear map model, thus giving the first iO candidate that is provably secure against all known polynomial-time attacks on GGH13. The proof of security relies on a new assumption about the hardness of computing annihilating polynomials, and we show that this assumption is implied by the existence of pseudorandom functions in NC\(^1\).

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Sanjam Garg
    • 1
  • Eric Miles
    • 2
  • Pratyay Mukherjee
    • 1
  • Amit Sahai
    • 2
  • Akshayaram Srinivasan
    • 1
  • Mark Zhandry
    • 3
    • 4
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.UCLA and Center for Encrypted FunctionalitiesLos AngelesUSA
  3. 3.MITCambridgeUSA
  4. 4.Princeton UniversityPrincetonUSA

Personalised recommendations