Oblivious Transfer from Any Non-trivial Elastic Noisy Channel via Secret Key Agreement

  • Ignacio Cascudo
  • Ivan Damgård
  • Felipe Lacerda
  • Samuel Ranellucci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9985)


A \((\gamma ,\delta )\)-elastic channel is a binary symmetric channel between a sender and a receiver where the error rate of an honest receiver is \(\delta \) while the error rate of a dishonest receiver lies within the interval \([\gamma , \delta ]\). In this paper, we show that from any non-trivial elastic channel (i.e., \(0<\gamma<\delta <\frac{1}{2}\)) we can implement oblivious transfer with information-theoretic security. This was previously (Khurana et al., Eurocrypt 2016) only known for a subset of these parameters. Our technique relies on a new way to exploit protocols for information-theoretic key agreement from noisy channels. We also show that information-theoretically secure commitments where the receiver commits follow from any non-trivial elastic channel.


Oblivious transfer Elastic channels Key agreement Commitments 


  1. [BCC88]
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)MathSciNetCrossRefMATHGoogle Scholar
  2. [BCS96]
    Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes. IEEE Trans. Inf. Theory 42(6), 1769–1780 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. [BS94]
    Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_35 Google Scholar
  4. [Can01]
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)Google Scholar
  5. [CK88]
    Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (Extended Abstract). In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24–26 October 1988, pp. 42–52 (1988)Google Scholar
  6. [CMW05]
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30598-9_4 CrossRefGoogle Scholar
  7. [Cré97]
    Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0_21 Google Scholar
  8. [CS06]
    Crépeau, C., Savvides, G.: Optimal reductions between oblivious transfers using interactive hashing. In: Proceedings of Advances in Cryptology - EUROCRYpPT, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28–June 1, pp. 201–221 (2006)Google Scholar
  9. [CvdGT95]
    Crépeau, C., Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995). doi:10.1007/3-540-44750-4_9 CrossRefGoogle Scholar
  10. [DFMS04]
    Damgård, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1_20 CrossRefGoogle Scholar
  11. [DKS99]
    Damgård, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious transfer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_5 Google Scholar
  12. [DORS08]
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. [Est04]
    Estren, G.: Universally composable committed oblivious transfer and multi-party computation assuming only basic black-box primitives. Ph.D. thesis, McGill University (2004)Google Scholar
  14. [GMW86]
    Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7_11 CrossRefGoogle Scholar
  15. [HKN+05]
    Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Proceedings of Advances in Cryptology - EUROCRYpPT, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, pp. 96–113, 22–26 May 2005Google Scholar
  16. [IKO+11]
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_38 CrossRefGoogle Scholar
  17. [Kil88]
    Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 20–31. ACM (1988)Google Scholar
  18. [Kil92]
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–732. ACM (1992)Google Scholar
  19. [KMS16]
    Khurana, D., Maji, H.K., Sahai, A.: Secure computation from elastic noisy channels. In: Proceedings of Advances in Cryptology - EUROCRYpPT - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, Part II, pp. 184–212, 8–12 May 2016Google Scholar
  20. [Mau93]
    Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. [PDMN11]
    Pinto, A.C.B., Dowsley, R., Morozov, K., Nascimento, A.C.A.: Achieving oblivious transfer capacity of generalized erasure channels in the malicious model. IEEE Trans. Inf. Theory 57(8), 5566–5571 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Ignacio Cascudo
    • 1
  • Ivan Damgård
    • 2
  • Felipe Lacerda
    • 2
  • Samuel Ranellucci
    • 2
  1. 1.Department of MathematicsAalborg UniversityAalborgDenmark
  2. 2.Department of Computer ScienceAarhus UniversityAarhusDenmark

Personalised recommendations