Simulating Auxiliary Inputs, Revisited

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9985)

Abstract

For any pair (XZ) of correlated random variables we can think of Z as a randomized function of X. If the domain of Z is small, one can make this function computationally efficient by allowing it to be only approximately correct. In folklore this problem is known as simulating auxiliary inputs. This idea of simulating auxiliary information turns out to be a very usefull tool, finding applications in complexity theory, cryptography, pseudorandomness and zero-knowledge. In this paper we revisit this problem, achieving the following results:
  1. (a)

    We present a novel boosting algorithm for constructing the simulator. This boosting proof is of independent interest, as it shows how to handle “negative mass” issues when constructing probability measures by shifting distinguishers in descent algorithms. Our technique essentially fixes the flaw in the TCC’14 paper “How to Fake Auxiliary Inputs”.

     
  2. (b)

    The complexity of our simulator is better than in previous works, including results derived from the uniform min-max theorem due to Vadhan and Zheng. To achieve \((s,\epsilon )\)-indistinguishability we need the complexity \(O\left( s\cdot 2^{5\ell }\epsilon ^{-2}\right) \) in time/circuit size, which improve previous bounds by a factor of \(\epsilon ^{-2}\). In particular, with we get meaningful provable security for the EUROCRYPT’09 leakage-resilient stream cipher instantiated with a standard 256-bit block cipher, like \(\mathsf {AES256}\).

     

Our boosting technique utilizes a two-step approach. In the first step we shift the current result (as in gradient or sub-gradient descent algorithms) and in the separate step we fix the biggest non-negative mass constraint violation (if applicable).

Keywords

Simulating auxiliary inputs Boosting Leakage-resilient cryptography Stream ciphers Computational indistinguishability 

References

  1. [BL13]
    Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using hash functions with small output size. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 235–250. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39059-3_16 CrossRefGoogle Scholar
  2. [CLP15]
    Chung, K.-M., Lui, E., Pass, R.: From weak to strong zero-knowledge and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 66–92. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6_4 Google Scholar
  3. [DP08]
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, Washington, DC, USA, FOCS 2008, pp. 293–302. IEEE Computer Society (2008)Google Scholar
  4. [DP10]
    Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel attacks on Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_2 CrossRefGoogle Scholar
  5. [DTT09]
    De, A., Trevisan, L., Tulsiani, M.: Non-uniform attacks against one-way functions and prgs. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 16, p. 113 (2009)Google Scholar
  6. [FK99]
    Frieze, A.M., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. [FPS12]
    Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–232. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_13 CrossRefGoogle Scholar
  8. [FR12]
    Fuller, B., Reyzin, L.: Computational entropy and information leakage. Cryptology ePrint Archive, report 2012/466 (2012). http://eprint.iacr.org/
  9. [GW11]
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) STOC, pp. 99–108. ACM (2011)Google Scholar
  10. [Imp95]
    Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: 36th Annual Symposium on Foundations of Computer Science, pp. 538–545. IEEE (1995)Google Scholar
  11. [JP14]
    Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. [LM94]
    Luby, M.G., Michael, L.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  13. [Pie09]
    Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_27 CrossRefGoogle Scholar
  14. [Pie15]
    Pietrzak, K.: Private communication, May 2015Google Scholar
  15. [RTTV08]
    Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.: Dense subsets of pseudorandom sets. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, Washington, DC, USA, FOCS 2008, pp. 76–85. IEEE Computer Society (2008)Google Scholar
  16. [Skó15]
    Skórski, M.: Time-advantage ratios under simple transformations: applications in cryptography. Cryptography and Information Security in the Balkans - Second International Conference, BalkanCryptSec: Koper, Slovenia, 3–4 September 2015. Revised Selected Papers, pp. 79–91 (2015)Google Scholar
  17. [TTV09]
    Trevisan, L., Tulsiani, M., Vadhan, S.: Regularity, boosting, and efficiently simulating every high-entropy distribution. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity, Washington, DC, USA, CCC 2009, pp. 126–136. IEEE Computer Society (2009)Google Scholar
  18. [VZ13]
    Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applications in cryptography. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 93–110. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_6 CrossRefGoogle Scholar
  19. [YS13]
    Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 223–238. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36095-4_15 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.University of WarsawWarsawPoland

Personalised recommendations