Constant-Round Maliciously Secure Two-Party Computation in the RAM Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9985)

Abstract

The random-access memory (RAM) model of computation allows program constant-time memory lookup and is more applicable in practice today, covering many important algorithms. This is in contrast to the classic setting of secure 2-party computation (2PC) that mostly follows the approach for which the desired functionality must be represented as a boolean circuit. In this work we design the first constant round maliciously secure two-party protocol in the RAM model. Our starting point is the garbled RAM construction of Gentry et al. [16] that readily induces a constant round semi-honest two-party protocol for any RAM program assuming identity-based encryption schemes. We show how to enhance the security of their construction into the malicious setting while facing several challenges that stem due to handling the data memory. Next, we show how to apply our techniques to a more recent garbled RAM construction by Garg et al. [13] that is based on one-way functions.

References

  1. 1.
    Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_27 Google Scholar
  2. 2.
    Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1_31 Google Scholar
  3. 3.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Harriet, O. (ed.) 22nd STOC, pp. 503–513. ACM (1990)Google Scholar
  4. 4.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS, pp. 784–796 (2012)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random oracles. J. Cryptology 24(4), 659–693 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chung, K.-M., Pass, R.: A simple oram. Cryptology ePrint Archive, Report 2013/243 (2013). http://eprint.iacr.org/2013/243
  9. 9.
    Cook, S.A., Reckhow, R.A.: Time-bounded random access machines. In: Proceedings of the 4th Annual ACM Symposium on Theory of Computing, Denver, Colorado, USA, 1–3 May 1972, pp. 73–80 (1972)Google Scholar
  10. 10.
    Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_10 CrossRefGoogle Scholar
  11. 11.
    Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty ram computation in constant rounds. In: TCC (2016, to appear)Google Scholar
  12. 12.
    Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: FOCS 2015, pp. 210–229 (2016)Google Scholar
  13. 13.
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: STOC, pp. 449–458 (2015)Google Scholar
  14. 14.
    Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimizing ORAM and using it efficiently for secure computation. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39077-7_1 CrossRefGoogle Scholar
  15. 15.
    Gentry, C., Halevi, S., Jutla, C.S., Raykova, M.: Private database access with he-over-oram architecture. IACR Cryptology ePrint Archive, 2014:345 (2014)Google Scholar
  16. 16.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_23 CrossRefGoogle Scholar
  17. 17.
    Goldreich, O.: Towards a theory of software protection and simulation by oblivious RAMs. In: STOC, pp. 182–194 (1987)Google Scholar
  18. 18.
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York (2004)CrossRefMATHGoogle Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  20. 20.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group data access via stateless oblivious RAM simulation. In: SODA, pp. 157–167 (2012)Google Scholar
  22. 22.
    Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: CCS, pp. 513–524 (2012)Google Scholar
  23. 23.
    Hu, Z., Mohassel, P., Rosulek, M.: Efficient zero-knowledge proofs of non-algebraic statements with sublinear amortized cost. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 150–169. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7_8 CrossRefGoogle Scholar
  24. 24.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_23 CrossRefGoogle Scholar
  25. 25.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_32 CrossRefGoogle Scholar
  26. 26.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_18 CrossRefGoogle Scholar
  27. 27.
    Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4_6 CrossRefGoogle Scholar
  28. 28.
    Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_27 Google Scholar
  29. 29.
    Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious RAM and a new balancing scheme. In: SODA, pp. 143–156 (2012)Google Scholar
  30. 30.
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_1 CrossRefGoogle Scholar
  31. 31.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4_4 CrossRefGoogle Scholar
  32. 32.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_20 CrossRefGoogle Scholar
  33. 33.
    Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model secure computation. In: IEEE Symposium on Security and Privacy, pp. 623–638 (2014)Google Scholar
  34. 34.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_42 CrossRefGoogle Scholar
  35. 35.
    Miao, P.: Cut-and-choose for garbled RAM. Cut-and-Choose for Garbled RAM IACR Cryptology ePrint Archive 2016:907 (2016)Google Scholar
  36. 36.
    Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  37. 37.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_22 CrossRefGoogle Scholar
  38. 38.
    Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC, pp. 514–523 (1990)Google Scholar
  39. 39.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7_15 CrossRefGoogle Scholar
  40. 40.
    Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas, S.: Constants count: practical improvements to oblivious RAM. In: USENIX, pp. 415–430 (2015)Google Scholar
  42. 42.
    Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)\(^{3}\)) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_11 CrossRefGoogle Scholar
  43. 43.
    Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Xiangyao, Y., Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In: CCS, pp. 299–310 (2013)Google Scholar
  44. 44.
    Wang, X., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-Ostrovsky lower bound. In: CCS, pp. 850–861 (2015)Google Scholar
  45. 45.
    Wang, X.S., Huang, Y., Hubert Chan, T.-H., Shelat, A., Shi, E.: SCORAM: oblivious RAM for secure computation. In: CCS, pp. 191–202 (2014)Google Scholar
  46. 46.
    Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: CCS, pp. 293–304 (2012)Google Scholar
  47. 47.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)Google Scholar
  48. 48.
    Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Bar Ilan UniversityRamat GanIsrael

Personalised recommendations