Secure Multiparty RAM Computation in Constant Rounds

  • Sanjam Garg
  • Divya Gupta
  • Peihan Miao
  • Omkant Pandey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9985)

Abstract

Secure computation of a random access machine (RAM) program typically entails that it be first converted into a circuit. This conversion is unimaginable in the context of big-data applications where the size of the circuit can be exponential in the running time of the original RAM program. Realizing these constructions, without relinquishing the efficiency of RAM programs, often poses considerable technical hurdles. Our understanding of these techniques in the multi-party setting is largely limited. Specifically, the round complexity of all known protocols grows linearly in the running time of the program being computed. In this work, we consider the multi-party case and obtain the following results:
  • Semi-honest model: We present a constant-round black-box secure computation protocol for RAM programs. This protocol is obtained by building on the new black-box garbled RAM construction by Garg, Lu, and Ostrovsky [FOCS 2015], and constant-round secure computation protocol for circuits of Beaver, Micali, and Rogaway [STOC 1990]. This construction allows execution of multiple programs on the same persistent database.

  • Malicious model: Next, we show how to extend our semi-honest results to the malicious setting, while ensuring that the new protocol is still constant-round and black-box in nature.

References

  1. 1.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: 28th ACM STOC, pp. 479–488. ACM Press, May 1996Google Scholar
  2. 2.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990Google Scholar
  3. 3.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012)Google Scholar
  4. 4.
    Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their applications. Cryptology ePrint Archive, Report 2014/771 (2014). http://eprint.iacr.org/2014/771
  5. 5.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988)Google Scholar
  6. 6.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfuscation of iterated circuits and RAM programs. Cryptology ePrint Archive, Report 2014/769 (2014). http://eprint.iacr.org/2014/769
  7. 7.
    Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J. Comput. Syst. Sci. 7(4), 354–375 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_1 CrossRefGoogle Scholar
  10. 10.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  11. 11.
    Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: 56th Annual IEEE Symposium on Foundations of Computer Science (2015)Google Scholar
  12. 12.
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 449–458. ACM Press (2015)Google Scholar
  13. 13.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009Google Scholar
  14. 14.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_23 CrossRefGoogle Scholar
  15. 15.
    Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM computation. In: 55th FOCS, pp. 404–413. IEEE Computer Society Press, October 2014Google Scholar
  16. 16.
    Goldreich, O.: Towards a theory of software protection and simulation by oblivious RAMs. In: Aho, A. (ed.) 19th ACM STOC, pp. 182–194. ACM Press (1987)Google Scholar
  17. 17.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press (1987)Google Scholar
  18. 18.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_30 CrossRefGoogle Scholar
  20. 20.
    Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: CCS (2012)Google Scholar
  21. 21.
    Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society Press, October 2012Google Scholar
  22. 22.
    Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3_17 CrossRefGoogle Scholar
  23. 23.
    Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 515–524. ACM Press, May/June 2014Google Scholar
  24. 24.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). doi:10.1007/11761679_21 CrossRefGoogle Scholar
  25. 25.
    Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation in the RAM model. In: TCC (2016-B)Google Scholar
  26. 26.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989Google Scholar
  27. 27.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, Heidelberg (1990). doi:10.1007/0-387-34799-2_2 CrossRefGoogle Scholar
  28. 28.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_9 CrossRefGoogle Scholar
  29. 29.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 99–108. ACM Press (2006)Google Scholar
  30. 30.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_32 CrossRefGoogle Scholar
  31. 31.
    Lin, H., Pass, R.: Succinct garbling schemes and applications. Cryptology ePrint Archive, Report 2014/766 (2014). http://eprint.iacr.org/2014/766
  32. 32.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_42 CrossRefGoogle Scholar
  33. 33.
    Miao, P.: Cut-and-choose for garbled RAM. Personal Communication (2016)Google Scholar
  34. 34.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_22 CrossRefGoogle Scholar
  35. 35.
    Ostrovsky, R.: Efficient computation on oblivious RAMs. In: 22nd ACM STOC, pp. 514–523. ACM Press, May 1990Google Scholar
  36. 36.
    Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: 29th ACM STOC, pp. 294–303. ACM Press, May 1997Google Scholar
  37. 37.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_24 CrossRefGoogle Scholar
  38. 38.
    Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)Google Scholar
  40. 40.
    Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010Google Scholar
  41. 41.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Sanjam Garg
    • 1
  • Divya Gupta
    • 1
  • Peihan Miao
    • 1
  • Omkant Pandey
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Stony Brook UniversityStony BrookUSA

Personalised recommendations