Composable Adaptive Secure Protocols Without Setup Under Polytime Assumptions

  • Carmit Hazay
  • Muthuramakrishnan Venkitasubramaniam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9985)

Abstract

All previous constructions of general multiparty computation protocols that are secure against adaptive corruptions in the concurrent setting either require some form of setup or non-standard assumptions. In this paper we provide the first general construction of secure multi-party computation protocol without any setup that guarantees composable security in the presence of an adaptive adversary based on standard polynomial-time assumptions. We prove security under the notion of “UC with super-polynomial helpers” introduced by Canetti et al. (FOCS 2010), which is closed under universal composition and implies “super-polynomial-time simulation”. Moreover, our construction relies on the underlying cryptographic primitives in a black-box manner.

Next, we revisit the zero-one law for two-party secure functions evaluation initiated by the work of Maji, Prabhakaran and Rosulek (CRYPTO 2010). According to this law, every two-party functionality is either trivial (meaning, such functionalities can be reduced to any other functionality) or complete (meaning, any other functionality can be reduced to these functionalities) in the Universal Composability (UC) framework. As our second contribution, assuming the existence of a simulatable public-key encryption scheme, we establish a zero-one law in the adaptive setting. Our result implies that every two-party non-reactive functionality is either trivial or complete in the UC framework in the presence of adaptive, malicious adversaries.

Keywords

UC security Adaptive secure computation Coin-tossing Black-box construction Extractable commitments Zero-one law 

References

  1. [BCNP04]
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Focs, pp. 186–195 (2004)Google Scholar
  2. [Bea91]
    Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)Google Scholar
  3. [BS05]
    Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)Google Scholar
  4. [Can01]
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  5. [CDMW09]
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. [CDPW06]
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. IACR Cryptology ePrint Archive, 2006:432 (2006)Google Scholar
  7. [CF01]
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. [CKL06]
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptology 19(2), 135–167 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. [CLP10]
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)Google Scholar
  10. [CLP13]
    Canetti, R., Lin, H., Pass, R.: From unprovability to environmentally friendly protocols. In: FOCS, pp. 70–79 (2013)Google Scholar
  11. [CPS07]
    Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an imperfect reference string. In: FOCS, pp. 249–259 (2007)Google Scholar
  12. [DDN03]
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Rev. 45(4), 727–784 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. [DMRV13]
    Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. [DN00]
    Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. [GLP+15]
    Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 260–289. Springer, Heidelberg (2015)Google Scholar
  16. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  17. [HV15]
    Hazay, C., Venkitasubramaniam, M.: On black-box complexity of universally composable security in the CRS model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 183–209. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3_8 CrossRefGoogle Scholar
  18. [IPS08]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. [Kiy14]
    Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. [KLP07]
    Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of secure protocols in the timing model. J. Cryptology 20(4), 431–492 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. [KMO14]
    Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. [Lin03]
    Lindell, Y.: General composition and universal composability in secure multi-party computation. In: FOCS, pp. 394–403 (2003)Google Scholar
  23. [LP12a]
    Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. [LP12b]
    Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up (full version) (2012). https://www.cs.ucsb.edu/rachel.lin
  25. [LPV08]
    Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. [LPV09]
    Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone nonmalleability. In: STOC, pp. 179–188 (2009)Google Scholar
  27. [LZ11]
    Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure oblivious transfer. J. Cryptology 24(4), 761–799 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. [MMY06]
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. [MPR10]
    Maji, H.K., Prabhakaran, M., Rosulek, M.: A zero-one law for cryptographic complexity with respect to computational UC security. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. [MR91]
    Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  31. [Nao91]
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)CrossRefMATHGoogle Scholar
  32. [ORSV13]
    Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting lower and upper bounds for selective decommitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 559–578. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. [Pas03]
    Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9_10 CrossRefGoogle Scholar
  34. [PR08]
    Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party computation problems: classifications and separations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. [PS04]
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universalcomposability without trusted setup. In: STOC, pp. 242–251 (2004)Google Scholar
  36. [RK99]
    Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 415. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  37. [Ven14]
    Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Heidelberg (2014)Google Scholar
  38. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Carmit Hazay
    • 1
  • Muthuramakrishnan Venkitasubramaniam
    • 2
  1. 1.Bar-Ilan UniversityRamat GanIsrael
  2. 2.University of RochesterRochesterUSA

Personalised recommendations