Simultaneous Secrecy and Reliability Amplification for a General Channel Model

  • Russell Impagliazzo
  • Ragesh Jaiswal
  • Valentine Kabanets
  • Bruce M. Kapron
  • Valerie King
  • Stefano Tessaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9985)

Abstract

We present a general notion of channel for cryptographic purposes, which can model either a (classical) physical channel or the consequences of a cryptographic protocol, or any hybrid. We consider simultaneous secrecy and reliability amplification for such channels. We show that simultaneous secrecy and reliability amplification is not possible for the most general model of channel, but, at least for some values of the parameters, it is possible for a restricted class of channels that still includes both standard information-theoretic channels and keyless cryptographic protocols.

Even in the restricted model, we require that for the original channel, the failure chance for the attacker must be a factor c more than that for the intended receiver. We show that for any \(c > 4 \), there is a one-way protocol (where the sender sends information to the receiver only) which achieves simultaneous secrecy and reliability. From results of Holenstein and Renner (CRYPTO’05), there are no such one-way protocols for \(c < 2\). On the other hand, we also show that for \(c > 1.5\), there are two-way protocols that achieve simultaneous secrecy and reliability.

We propose using similar models to address other questions in the theory of cryptography, such as using noisy channels for secret agreement, trade-offs between reliability and secrecy, and the equivalence of various notions of oblivious channels and secure computation.

References

  1. 1.
    Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: Proceedings of the 38th IEEE Annual Symposium on Foundations of Computer Science, FOCS 1997, pp. 374–383 (1997)Google Scholar
  2. 2.
    Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_18 CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  4. 4.
    Chung, K.-M., Liu, F.-H.: Parallel repetition theorems for interactive arguments. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 19–36. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2_2 CrossRefGoogle Scholar
  5. 5.
    Chung, K.-M., Pass, R.: Tight parallel repetition theorems for public-coin arguments using KL-divergence. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 229–246. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_9 CrossRefGoogle Scholar
  6. 6.
    Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0_21 CrossRefGoogle Scholar
  7. 7.
    Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions. In: 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 42–52, October 1988Google Scholar
  8. 8.
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30598-9_4 CrossRefGoogle Scholar
  9. 9.
    Csiszar, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dodis, Y.: Shannon impossibility, revisited. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 100–110. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32284-6_6 CrossRefGoogle Scholar
  11. 11.
    Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_21 CrossRefGoogle Scholar
  12. 12.
    Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with one-way communication. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 191–208. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7_10 CrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 25–32 (1989)Google Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Haitner, I.: A parallel repetition theorem for any interactive argument. In: Proceedings of the 50th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2009, pp. 241–250 (2009)Google Scholar
  16. 16.
    Halevi, S., Rabin, T.: Degradation and amplification of computational hardness. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 626–643. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8_34 CrossRefGoogle Scholar
  17. 17.
    Håstad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel repetition theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 1–18. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2_1 CrossRefGoogle Scholar
  18. 18.
    Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 664–673 (2005)Google Scholar
  19. 19.
    Holenstein, T., Renner, R.: One-way secret-key agreement and applications to circuit polarization and immunization of public-key encryption. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer, Heidelberg (2005). doi:10.1007/11535218_29 CrossRefGoogle Scholar
  20. 20.
    Holenstein, T., Schoenebeck, G.: General hardness amplification of predicates and puzzles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 19–36. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_2 CrossRefGoogle Scholar
  21. 21.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_38 CrossRefGoogle Scholar
  22. 22.
    Iwamoto, M., Ohta, K.: Security notions for information theoretically secure encryptions. In: 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1777–1781, July 2011Google Scholar
  23. 23.
    Iwamoto, M., Ohta, K., Shikata, J.: Security formalizations and their relationships for encryption and key agreement in information-theoretic cryptography. CoRR, abs/1410.1120 (2014)Google Scholar
  24. 24.
    Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Liang, Y., Poor, H.V., Shamai (Shitz), S.: Information theoretic security. Found. Trends Commun. Inf. Theory 5(45), 355–580 (2008)MATHGoogle Scholar
  26. 26.
    Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_30 CrossRefGoogle Scholar
  27. 27.
    Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27375-9_3 CrossRefGoogle Scholar
  28. 28.
    Maurer, U., Renner, R.: Abstract cryptography. In: ICS, pp. 1–21. Tsinghua University Press (2011)Google Scholar
  29. 29.
    Maurer, U.M.: Perfect cryptographic security from partially independent channels. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 561–571. ACM, New York (1991)Google Scholar
  30. 30.
    Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Ueli, M.: Information-theoretic cryptography. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 47–65. Springer, Berlin Heidelberg (1999). doi:10.1007/3-540-48405-1_4 CrossRefGoogle Scholar
  32. 32.
    Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for Arthur-Merlin games. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC 2007, pp. 420–429 (2007)Google Scholar
  33. 33.
    Pietrzak, K., Wikström, D.: Parallel repetition of computationally sound protocols revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7_5 CrossRefGoogle Scholar
  34. 34.
    Sahai, A., Vadhan, S.P.: A complete promise problem for statistical zero-knowledge. In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 448–457. IEEE Computer Society (1997)Google Scholar
  35. 35.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Shikata, J.: Formalization of information-theoretic security for key agreement, revisited. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2720–2724, July 2013Google Scholar
  37. 37.
    Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4_32 CrossRefGoogle Scholar
  38. 38.
    Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_20 CrossRefGoogle Scholar
  39. 39.
    Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Russell Impagliazzo
    • 1
  • Ragesh Jaiswal
    • 2
  • Valentine Kabanets
    • 3
  • Bruce M. Kapron
    • 4
  • Valerie King
    • 4
  • Stefano Tessaro
    • 5
  1. 1.University of California, San DiegoSan DiegoUSA
  2. 2.Indian Institute of Technology DelhiNew DelhiIndia
  3. 3.Simon Fraser UniversityBurnabyCanada
  4. 4.University of VictoriaVictoriaCanada
  5. 5.University of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations