Skip to main content

Molecular Dynamics Study on Nanoparticle Collision and Coalescence

  • Chapter
  • First Online:
Book cover Dynamics of Nanoparticles in Stagnation Flames

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Chapters 2 and 3 study nanoparticle dynamics at the flow field level. In this chapter, we will go deeper to particle level with the help of molecular dynamics (MD) simulation method. Conventional theories on particle dynamics, for instance collision kinetics from aerosol field and sintering laws from ceramics field, could not be directly extended to nanoparticles without proper consideration of size effects. First, some forces become long-ranged as particle size gets small and thus important for nanoparticle dynamics. Second, as the surface-to-volume ratio increases, the impact of surface forces and energy on the whole system dramatically increases. Third, the high surface curvature largely alters the crystalline properties of nanoparticles, e.g., melting point. All these factors have great influences on particle dynamics and hence drive a lot of attention in both academics and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackler HD, French RH, Chiang YM (1996) Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: from force laws and physical properties. J Colloid Interf Sci 179(2):460–469

    Article  Google Scholar 

  • Adachi M, Kousaka Y, Okuyama K (1985) Unipolar and bipolar diffusion charging of ultrafine aerosol particles. J Aerosol Sci 16:109–123

    Article  Google Scholar 

  • Adiga SP, Zapol P, Curtiss LA (2007) Structure and morphology of hydroxylated amorphous alumina surfaces. J Phys Chem C, 111:7422–7742

    Google Scholar 

  • Alam MK (1987) The effect of van der Waals and viscous forces on aerosol coagulation. Aerosol Sci Tech 6:41–52

    Article  Google Scholar 

  • Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523

    Article  Google Scholar 

  • Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46(16):5611–5626

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Buesser B, Gröhn AJ, Pratsinis SE (2011) Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics. J Phys Chem C 115:11030–11035

    Article  Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287

    Article  Google Scholar 

  • Blanton SA, Leheny RL, Hines MA et al (1997) Dielectric dispersion measurements of CdSe nanocrystal colloids: observation of a permanent dipole moment. Phys Rev Lett 79:865–868

    Article  Google Scholar 

  • Carey VP (2008) Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Taylor & Francis

    Google Scholar 

  • Chen IW, Wang XH (2000) Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404(6774):168–171

    Article  Google Scholar 

  • Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Mater Lett 63:1525–1527

    Article  Google Scholar 

  • Cho KS, Talapin DV, Gaschler W et al (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127:7140–7147

    Article  Google Scholar 

  • Cromer DT, Mann JB (1968) X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Crystallogr Sec A 24:321–324

    Article  Google Scholar 

  • Ding F, Rosén A, Bolton K (2004) Size dependence of the coalescence and melting of iron clusters: a molecular-dynamics study. Phys Rev B 70:075416

    Article  Google Scholar 

  • Dominguez O, Champion Y, Bigot J (1998) Liquid like sintering behavior of nanometric Fe and Cu powders: experimental approach. Metall Mater Trans A 29(12):2941–2949

    Article  Google Scholar 

  • Ehrman SH, Friedlander SK, Zachariah MR (1998) Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame. J Aerosol Sci 29:687–706

    Article  Google Scholar 

  • Einstein A (1905) On the movement of small particles suspended in statiunary liquids required by the molecular-kinetic theory of heat. Ann Phys 17:549–560

    Article  Google Scholar 

  • Fang ZZ, Wang H (2008) Densification and grain growth during sintering of nanosized particles. Int Mater Rev 53(6):326–352

    Article  Google Scholar 

  • Frandsen C, Bahl CRH, Lebech B et al (2005) Oriented attachment and exchange coupling of α-Fe2O3 nanoparticles. Phys Rev B 72:214406

    Article  Google Scholar 

  • Frenken JW, Van der Veen JF (1985) Observation of surface melting. Phys Rev Lett 54(2):134

    Article  Google Scholar 

  • Frenken JW, Marée PM, van der Veen JF (1986) Observation of surface-initiated melting. Phys Rev B 34(11):7506

    Article  Google Scholar 

  • Friedlander SK (2000) Smoke, dust and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Friedlander SK, Wu MK (1994) Linear rate law for the decay of the excess surface area of a coalescing solid particle. Phys Rev B 49:3622

    Article  Google Scholar 

  • Fuchs NA (1964) The Mechanics of Aerosols. Macmillan

    Google Scholar 

  • German GM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  • Gutiérrez G, Johansson B (2002) Molecular dynamics study of structural properties of amorphous Al2O3. Phys Rev B, 65:104202.

    Google Scholar 

  • Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Physica 4:1058–1072

    Article  Google Scholar 

  • Hanszen KJ (1960) Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen. Zeitschrift für Physik A Hadrons and Nuclei 157:523–553

    Google Scholar 

  • Hinds WC (1999) Aerosol Tehnology. Wiley, New York

    Google Scholar 

  • Hoang VV, Zung H, Trong NHB (2007) Structural properties of amorphous TiO2 nanoparticles. Eur Phys J D 44(3):515–524

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14(1):33–38

    Article  Google Scholar 

  • Hu M, Poulikakos D, Grigoropoulos CP, Pan H (2010) Recrystallization of picosecond laser-melted ZnO nanoparticles in a liquid: a molecular dynamics study. J Chem Phys 132(16):164504

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, San Diego

    Google Scholar 

  • Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. In: Proceedings of the Royal Society of London A, 324:301–313

    Google Scholar 

  • Kazakov AV, Shpiro ES, Voskoboinikov TV (1995) Application of Debye function analysis to particle size and shape determination in Ir/SiO2 catalysts. J Phys Chem 99:8323–8327

    Article  Google Scholar 

  • Kobata A, Kusakabe K, Morooka S (2004) Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J 37:347–359

    Article  Google Scholar 

  • Koch W, Friedlander SK (1990) The effect of particle coalescence on the surface area of a coagulating aerosol. J Colloid Interf Sci 140:419–427

    Article  Google Scholar 

  • Kofman R, Cheyssac P, Aouaj A et al (1994) Surface melting enhanced by curvature effects. Surf Sci 303(1):231–246

    Article  Google Scholar 

  • Koparde VN, Cummings PT (2005) Molecular dynamics simulation of titanium dioxide nanoparticle sintering. J Phys Chem B 109:24280–24287

    Article  Google Scholar 

  • Koparde VN, Cummings PT (2008) Phase transformations during sintering of titania nanoparticles. ACS Nano 2:1620–1624

    Article  Google Scholar 

  • Lai SL, Guo JY, Petrova V, Ramanath G et al (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77:99–102

    Article  Google Scholar 

  • Lai SL, Carlsson JRA, Allen LH (1998) Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl Phys Lett 72:1098–1100

    Article  Google Scholar 

  • Lehtinen KE, Zachariah MR (2001) Effect of coalescence energy release on the temporal shape evolution of nanoparticles. Phys Rev B 63:205402

    Article  Google Scholar 

  • Lehtinen KE, Zachariah MR (2002) Energy accumulation in nanoparticle collision and coalescence processes. J Aerosol Sci 33:357–368

    Article  Google Scholar 

  • Lewis LJ, Jensen P, Barrat JL (1997) Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56:2248

    Article  Google Scholar 

  • Li LS, Alivisatos AP (2003) Origin and scaling of the permanent dipole moment in CdSe nanorods. Phys Rev Lett 90:97402

    Article  Google Scholar 

  • Li T, Kheifets S, Medellin D, Raizen MG (2010) Measurement of the instantaneous velocity of a Brownian particle. Science 328(5986):1673–1675

    Article  Google Scholar 

  • Maisels A, Jordan F, Fissan H (2002) Dynamics of the aerosol particle photocharging process. J Appl Phys 91(5):3377–3383

    Article  Google Scholar 

  • Marlow WH (1980a) Derivation of aerosol collision rates for singular attractive contact potentials. J Chem Phys 73:6284

    Article  Google Scholar 

  • Marlow WH (1980b) Lifshitz–van der Waals forces in aerosol particle collisions. I. Introduction: Water droplets. J Phys Chem 73:6288

    Article  Google Scholar 

  • Matsui M, Akaogi M (1991) Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol Simul 6:239–244

    Article  Google Scholar 

  • Memarzadeh S, Tolmachoff ED, Phares DJ et al (2011) Properties of nanocrystalline TiO2 synthesized in premixed flames stabilized on a rotating surface. Proc Combust Inst 33:1917–1924

    Article  Google Scholar 

  • Meyer AY (1988) Molecular mechanics and molecular shape. V. On the computation of the bare surface area of molecules. J Comput Chem 9(1):18–24

    Article  Google Scholar 

  • Naicker PK, Cummings PT, Zhang H et al (2005) Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J Phys Chem B 109:15243–15249

    Article  Google Scholar 

  • Nakade S, Saito Y, Kubo W et al (2003) Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. J Phys Chem B 107(33):8607–8611

    Article  Google Scholar 

  • Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  • Ohara PC, Leff DV, Heath JR et al (1995) Crystallization of opals from polydisperse nanoparticles. Phys Rev Lett 19:3466

    Article  Google Scholar 

  • Okuyama K, Kousaka Y, Hayashi K (1984) Change in size distribution of ultrafine aerosol particles undergoing Brownian coagulation. J Colloid Interf Sci 101:98–109

    Article  Google Scholar 

  • Oskam G, Nellore A, Penn RL et al (2003) The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. J Phys Chem B 107:1734–1738

    Article  Google Scholar 

  • Pan H, Ko SH, Grigoropoulos CP (2008) The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: a molecular dynamics simulation study. J Heat Transfer 130(9):092404

    Article  Google Scholar 

  • Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Z Phys Chem 65:1–35

    Article  Google Scholar 

  • Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281(5379):969–971

    Article  Google Scholar 

  • Peters KF, Cohen JB, Chung YW (1998) Melting of Pb nanocrystals. Phys Rev B 57:13430

    Article  Google Scholar 

  • Pluis B, Van der Gon AD, Frenken JWM et al (1987) Crystal-face dependence of surface melting. Phys Rev Lett 59(23):2678

    Article  Google Scholar 

  • Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219

    Article  Google Scholar 

  • Pui DYH, Fruin S, McMurry PH (1988) Unipolar diffusion charging of ultrafine aerosols. Aerosol Sci Tech 8:173–187

    Article  Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge university press, Cambridge

    Google Scholar 

  • Sankaranarayanan SK, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys Rev B 71:195415

    Article  Google Scholar 

  • Shanbhag S, Kotov NA (2006) On the origin of a permanent dipole moment in nanocrystals with a cubic crystal lattice: effects of truncation, stabilizers, and medium for CdS tetrahedral homologues. J Phys Chem B 110(25):12211–12217

    Article  Google Scholar 

  • Shim M, Guyot-Sionnest P (1999) Permanent dipole moment and charges in colloidal semiconductor quantum dots. J Chem Phys 111:6955

    Article  Google Scholar 

  • Shytov AV, Pustilnik M (2007) Permanent polarization of small metallic particles. Phys Rev B 76(4):041401

    Article  Google Scholar 

  • Smith W, Forester TR (1996) DL_POLY_2. 0: a general-purpose parallel molecular dynamics simulation package. J Mol Graphics 14:136–141

    Article  Google Scholar 

  • Smith W, Yong CW, Rodger PM (2002) DL_POLY: application to molecular simulation. Mol Simul 28:385–471

    Article  MATH  Google Scholar 

  • Song P, Wen D (2010) Molecular dynamics simulation of the sintering of metallic nanoparticles. J Nanopart Res 12:823–829

    Article  Google Scholar 

  • Talapin DV, Shevchenko EV, Murray CB et al (2007) Dipole-dipole interactions in nanoparticle superlattices. Nano Lett 7(5):1213–1219

    Article  Google Scholar 

  • Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240

    Article  Google Scholar 

  • Tang Z, Zhang Z, Wang Y et al (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278

    Article  Google Scholar 

  • Thimsen E, Biswas P (2007) Nanostructured photoactive films synthesized by a flame aerosol reactor. AIChE J 53:1727–1735

    Article  Google Scholar 

  • Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo watersplitting. J Phys Chem C 112:4134–4140

    Article  Google Scholar 

  • Traylor JG, Smith HG, Nicklow RM et al (1971) Lattice dynamics of rutile. Phys Rev B 3:3457–3472

    Article  Google Scholar 

  • Tsantilis S, Kammler HK, Pratsinis SE (2002) Population balance modeling of flame synthesis of titania nanoparticles. Chem Eng Sci 57(12):139–2156

    Article  Google Scholar 

  • Wang JJ, Li SQ, Yan W et al (2011) Synthesis of TiO2 nanoparticles by premixed stagnation swirl flames. Proc Combust Inst 33:1925–1932

    Article  Google Scholar 

  • Wang XH, Chen PL, Chen IW (2006) Two-step sintering of ceramics with constant grain-size, I. Y2O3. J Am Ceram Soc 89(2):431–437

    Article  Google Scholar 

  • Wang ZS, Kawauchi H, Kashima T et al (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248(13):1381–1389

    Article  Google Scholar 

  • Weertman JR (1993). Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 166(1–2):161–167

    Google Scholar 

  • Windeler RS, Lehtinen KE, Friedlander SK (1997) Production of Nanometer-Sized Metal Oxide Particles by Gas Phase Reaction in a Free Jet. II: Particle Size and Neck Formation—Comparison with Theory. Aerosol Sci Tech 27:191–205

    Google Scholar 

  • Wooldridge MS (1998) Gas-phase combustion synthesis of particles. Prog Energy Combust Sci 24:63–87

    Article  Google Scholar 

  • Wu MK, Windeler RS, Steiner CKR et al (1993) Controlled synthesis of nanosized particles by aerosol processes. Aerosol Sci Tech 19:527–548.

    Google Scholar 

  • Xing Y, Köylü ÜÖ, Rosner DE (1996) Synthesis and restructuring of inorganic nano-particles in counterflow diffusion flames. Combust Flame 107(1):85–102

    Article  Google Scholar 

  • Xiong Y, Pratsinis SE (1993) Formation of agglomerate particles by coagulation and sintering—part I. A two-dimensional solution of the population balance equation. J Aerosol Sci 24:283–300

    Article  Google Scholar 

  • Yan W, Li S, Zhang Y et al (2010) Effects of dipole moment and temperature on the interaction dynamics of titania nanoparticles during agglomeration. J Phys Chem C 114:10755–10760

    Article  Google Scholar 

  • Zachariah MR, Carrier MJ (1999) Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models. J Aerosol Sci 30:1139–1152

    Article  Google Scholar 

  • Zhang YY, Li SQ, Yan W et al (2011) Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. J Chem Phys 134:084501

    Article  Google Scholar 

  • Zhang YY, Li SQ, Deng SL et al (2012) Direct synthesis of nanostructured TiO2 films with controlled morphologies by stagnation swirl flames. J Aerosol Sci 44:71–82

    Article  Google Scholar 

  • Zhang H, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076

    Article  Google Scholar 

  • Zhang H, Chen B, Banfield JF, Waychunas GA (2008) Atomic structure of nanometer-sized amorphous TiO2. Phys Rev B 78:214106

    Article  Google Scholar 

  • Zhang H, Chen B, Banfield JF (2009) The size dependence of the surface free energy of titania nanocrystals. Phys Chem Chem Phys 11(14):2553–2558

    Article  Google Scholar 

  • Zhou Y, Karplus M, Ball KD et al (2002) The distance fluctuation criterion for melting: comparison of square-well and Morse potential models for clusters and homopolymers. J Chem Phys 116(5):2323–2329

    Article  Google Scholar 

  • Zhou Y, Karplus M, Wichert JM et al (1997) Equilibrium thermodynamics of homopolymers and clusters: molecular dynamics and Monte Carlo simulations of systems with square-well interactions. J Chem Phys 107(24):10691–10708

    Article  Google Scholar 

  • Zhu H (1996) Sintering processes of two nanoparticles: a study by molecular dynamics simulations. Philos Mag Lett 73(1):27–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhang, Y. (2017). Molecular Dynamics Study on Nanoparticle Collision and Coalescence. In: Dynamics of Nanoparticles in Stagnation Flames. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53615-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53615-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53613-1

  • Online ISBN: 978-3-662-53615-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics