Skip to main content

Performance Evaluation of Bone–Implant System During Implantation Process: Dynamic Modelling and Analysis

Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE,volume 8)

Abstract

Inappropriate choice of dental implant type in relation to the detailed structure of bone at the site, and inadequate surgical technique has led to 5 % failure of dental implants worldwide. By using the finite element method, three typical implant insertion scenarios are modelled and evaluated in this chapter. The scenarios are implant thread forming, cutting and the combination of forming and cutting. The bone–implant system is modelled using three-dimensional finite element technique which incorporates realistic material properties in simulating the cancellous and cortical bone. The bone–implant contact is defined using ‘surface-to-surface’ discretisation and the arbitrary Lagrangian–Eulerian adaptive meshing scheme. In current practice many implant companies recommend thread cutting for normal bone and forming for compact bone so that implant stability can be ensured. Based on the findings of the present study, the combination of forming and cutting may also be recommended for clinical practice because it best matches the specified ideal stress level resulting in positive bone stimulation with minimum resorption. Stress information obtained in these three implant insertion scenarios will advance the understanding of bone response at an early stage of the osseointegration process and primary stability.

Keywords

  • Dental implant
  • Implant insertion
  • Bone–implant system
  • Finite element modelling technique
  • Stress analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-53574-5_2
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-53574-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16

References

  1. Irish JD (2004) A 5,500 year old artificial human tooth from Egypt: a historical note. Int J Oral Maxillofac Implants 19(5):645–647

    Google Scholar 

  2. Brånemark PI (1983) Osseointegration and its experimental background. J Prosthet Dent 50(3):399–410

    CrossRef  Google Scholar 

  3. Bragger U, Krenander P, Lang NP (2005) Economic aspects of single-tooth replacement. Clin Oral Implants Res 16(3):335–341

    CrossRef  Google Scholar 

  4. van der Wijk P, Bouma J, van Oort RP, van Waas MA, van’t Hof MA, Rutten FF (1996) Cost-effectiveness analysis of dental implants. Ned Tijdschr Tandheelkd 103(10):382–385

    Google Scholar 

  5. Albrektsson T, Dahl E, Enbom L, Engevall S, Engquist B, Eriksson AR, Feldmann G, Freiberg N, Glantz PO, Kjellman O (1988) Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol 59(5):287–296

    CrossRef  Google Scholar 

  6. Arvidson K, Bystedt H, Frykholm A, von Konow L, Lothigius E (1992) A 3-year clinical study of Astra dental implants in the treatment of edentulous mandibles. Int J Oral Maxillofac Implants 7:321–329

    Google Scholar 

  7. Spiekermann H, Jansen VK, Richter EJ (1995) A 10-year follow-up study of IMZ and TPS implants in the edentulous mandible using bar-retained overdentures. Int J Oral Maxillofac Implants 10:231–243

    Google Scholar 

  8. Mericski-Stern R, Schaffner TS, Marti P, Geering AH (1994) Peri-implant mucosal aspects of ITI implants supporting overdentures: a five-year longitudinal study. Clin Oral Implants Res 5:9–18

    CrossRef  Google Scholar 

  9. Fritz ME (1996) Implant therapy. II. Ann Periodontol 1:796–815

    CrossRef  Google Scholar 

  10. Jemt T, Johansson J (2006) Implant treatment in the edentulous maxillae: a 15-year follow-up study on 76 consecutive patients provided with fixed prostheses. Clin Implant Dent Relat Res 8(2):61–69

    CrossRef  Google Scholar 

  11. Nobel Biocare (2012) http://www.nobelbiocare.com/. Accessed 12 July 2012

  12. Neoss, Pty Ltd (2009) Neoss implant system surgical guidelines. Neoss, Pty Ltd, Harrogate

    Google Scholar 

  13. O’Brien WJ (1989) Dent mats: properties and selection. Quintessence Publishing, Chicago/London

    Google Scholar 

  14. McClarance E (2004) Close to the cutting edge. Brånemark and the development of Osseointergration. Quintessence Publishing, London

    Google Scholar 

  15. Porter JA, von Fraunhofer JA (2005) Success or failure of dental implants? A literature review with treatment considerations. Gen Dent 53(6):423–432

    Google Scholar 

  16. Sennerby L, Meredith N (2008) Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 47(1):51–66. doi:10.1111/j.1600-0757.2008.00267.x

    CrossRef  Google Scholar 

  17. 3i (2013) 3i implant innovations Inc. http://biomet3i.com/. Accessed 13 Apr 2013

  18. Lambert FE, Weber HP, Susarla SM, Belser UC, Gallucci GO (2009) Descriptive analysis of implant and prosthodontic survival rates with fixed implant-supported rehabilitations in the edentulous maxilla. J Periodontol 80(8):1220–1230. doi:10.1902/jop.2009.090109

    CrossRef  Google Scholar 

  19. Mullender M, EI Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42:14–21

    CrossRef  Google Scholar 

  20. Miyata T, Kobayashi Y, Araki H, Ohto T, Shin K (2002) The influence of controlled occlusal overload on peri-implant tissue. Part 4: a histologic study in monkeys. Int J Oral Maxillofac Implants 17(3):384–390

    Google Scholar 

  21. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H (2003) Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 18(3):357–368

    Google Scholar 

  22. Petrie CS, Williams JL (2005) Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 16(4):486–494

    CrossRef  Google Scholar 

  23. Kitagawa T, Tanimoto Y, Nemoto K, Aida M (2005) Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J 24(2):219–224

    CrossRef  Google Scholar 

  24. Satoh T, Maeda Y, Komiyama Y (2005) Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. Int J Oral Maxillofac Implants 20(4):533–539

    Google Scholar 

  25. Perez del Palomar A, Arruga A, Cegonino J, Doblare M (2005) A finite element comparison between the mechanical behaviour of rigid and resilient oral implants with respect to immediate loading. Comput Meth Biomech Biomed Eng 8(1):45–57

    CrossRef  Google Scholar 

  26. Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G (2005) Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 93(3):227–234

    CrossRef  Google Scholar 

  27. van Staden R, Guan H, Johnson NW, Loo YC, Meredith N (2008) Step-wise analysis of dental implant insertion process using finite element technique. Clin Oral Implants Res 19(3):303–313

    CrossRef  Google Scholar 

  28. ABAQUS (2013) http://www.simulia.com. Accessed 5 Feb 2013

  29. Burstein AH, Reilly DT, Martens M (1976) Aging of bone tissue: mechanical properties. J Bone Joint Surg Am 58(1):82–86

    CrossRef  Google Scholar 

  30. Choubey A, Basu B, Balasubramaniam R (2004) Tribological behaviour of Ti-based alloys in simulated body fluid solution at fretting contacts. Mater Sci Eng A 379(1–2):234–239. doi:http://dx.doi.org/10.1016/j.msea.2004.02.027

    CrossRef  Google Scholar 

  31. van Staden R (2008) Finite element analysis of dental implant-bone system during and after implantation, PhD thesis. Griffith University, Australia

    Google Scholar 

  32. Rieger MR, Mayberry M, Brose MO (1990) Finite element analysis of six endosseous implants. J Prosthet Dent 63(6):671–676

    CrossRef  Google Scholar 

  33. O’Mahony A, Bowles Q, Woolsey G, Robinson SJ, Spencer P (2000) Stress distribution in the single-unit osseointegrated dental implant: finite element analyses of axial and off-axial loading. Implant Dent 9(3):207–218

    CrossRef  Google Scholar 

  34. Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

van Staden, R.C., Guan, H., Johnson, N.W., Loo, YC. (2017). Performance Evaluation of Bone–Implant System During Implantation Process: Dynamic Modelling and Analysis. In: Li, Q., Mai, YW. (eds) Biomaterials for Implants and Scaffolds. Springer Series in Biomaterials Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53574-5_2

Download citation