Skip to main content

Characterisation of Hydrogel Scaffolds Under Compression

  • Chapter
  • First Online:
  • 2071 Accesses

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 8))

Abstract

Although a variety of scaffolds have been developed in recent years for a range of applications, the repair of load-bearing tissues, such as articular cartilage in the knee, is still in its infancy due to the exceptional demands on mechanical strength and stiffness. Unfortunately, rigorous in vitro mechanical characterisation has often been superseded by in vivo testing in animals, where the loading scenarios often bear little resemblance to those in human, which has significantly restricted the potential range of clinical applications. A comprehensive mechanical characterisation is essential if scaffolds are to be used for load-bearing applications. In this chapter, we report the characterisation of viscoelastic behaviour of hydrogel scaffolds. The key factors, including the effects of constraint, strain rate and sample microstructure, on the mechanical properties of a hydrogel scaffold will be investigated. Some of the latest techniques such as micro-CT imaging, in situ image-guided failure assessment and digital volume correlation (DVC) will be explored in the characterisation of the hydrogel scaffold under uniaxial compression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Freeman MAR (1979) Adult articular cartilage. 2, Revised edn. Pitman Medical, Tunbridge Wells/GB

    Google Scholar 

  2. Suh J-K, Arøen A, Muzzonigro TS, Disilvestro M, Fu FH (1997) Injury and repair of articular cartilage: related scientific issues. Oper Tech Orthop 7(4):270–278

    Article  Google Scholar 

  3. Yannas IV (2001) Tissue and organ regeneration in adults. Springer, New York

    Google Scholar 

  4. Spector M (2006) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly 136:293–301

    Google Scholar 

  5. Luyten FP, Dell’Accio F, De Bari C (2001) Skeletal tissue engineering: opportunities and challenges. Best Pract Res Clin Rheumatol 15(5):759–769

    Article  Google Scholar 

  6. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol 12:689–693

    Article  Google Scholar 

  7. Langer R, Vacanti JP, Vacanti CA, Atala A, Freed LE, Vunjak-Novakovic G (1995) Tissue engineering. Biomed Appl Tissue Eng 1(2):151–161

    Article  Google Scholar 

  8. Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34(4–5):147–230

    Article  Google Scholar 

  9. Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5(6):545–554

    Article  Google Scholar 

  10. Hung CT, Lima EG, Mauck RL, Taki E, LeRoux MA, Lu HH, Stark RG, Guo XE, Ateshian GA (2003) Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech 36(12):1853–1864

    Article  Google Scholar 

  11. Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534

    Article  Google Scholar 

  12. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  Google Scholar 

  13. Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold. II Fabrication of a mineralized collagen–glycosaminoglycan scaffold. J Biomed Mater Res Part A 92(3):1066–1077

    Google Scholar 

  14. Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG (2001) Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Eng 7(6):767–780

    Article  Google Scholar 

  15. Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T (2009) Delayed incorporation of a Trufit Plug: perseverance is recommended. Arthroscopy 25(7):810–814

    Article  Google Scholar 

  16. Melton JT, Wilson AJ, Chapman-Sheath P, Cossey AJ (2010) TruFit CB® bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Dev 7(3):333–341

    Article  Google Scholar 

  17. Dhollander AAM, Liekens K, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PCM (2012) A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy 28(2):225–233

    Article  Google Scholar 

  18. Pearce CJ, Gartner LE, Mitchell A, Calder JD (2012) Synthetic osteochondral grafting of ankle osteochondral lesions. Foot Ankle Surg 18:114–118

    Article  Google Scholar 

  19. Madi K, Tozzi G, Zhang QH, Tong J, Cossey A, Au A, Hollis D, Hild F (2013) Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med Eng Phys 35(9):1298–1312

    Article  Google Scholar 

  20. Hsu YH, Lupton C, Tong J, Cossey A, Au A (2014) Mechanical characterisation of a scaffold under monotonic and cyclic loading conditions. Int J Exp Comput Biomech 2(4):359–375

    Article  Google Scholar 

  21. Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92(3):1078–1093

    Google Scholar 

  22. Toolan BC, Frenkel SR, Pachence JM, Yalowitz L, Alexander H (1996) Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair. J Biomed Mater Res 31:273–280

    Article  Google Scholar 

  23. Athanasiou K, Schmitz JP, Agrawal CM (1998) The effects of porosity on in vitro degradation of polylactic-acid-polyglycolic acid implants used in repair of articular cartilage. Tissue Eng 4(1):53–63

    Article  Google Scholar 

  24. Lu L, Zhu X, Valenzuela RG, Currier BL, Yaszemski MJ (2001) Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res 391:S251–S270

    Article  Google Scholar 

  25. Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, Fujita H (2000) Development of artificial articular cartilage. Proc Inst Mech Eng H J Eng Med 214:59–68

    Article  Google Scholar 

  26. Bera B (2009) Development of artificial articular cartilage. Sadhana 34(5):823–831

    Article  Google Scholar 

  27. Oka M, Noguchi T, Kumar P, Ikeuchi K, Yamamuro T, Hyon SH, Ikada Y (1990) Development of an artificial articular cartilage. Clin Mater 6:361–381

    Article  Google Scholar 

  28. Park S, Hung CT, Ateshian GA (2004) Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. OsteoArthritis Cartilage 12:65–73

    Article  Google Scholar 

  29. Korhonen RK, Jurvelin JS (2010) Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment. Med Eng Phys 32:155–160

    Article  Google Scholar 

  30. Wright TM, Hayes WC (1976) Tensile testing of bone over a wide range of strain rates: effects of strain rate, microstructure and density. Med Biol Eng Comput 14(6):671–680

    Article  Google Scholar 

  31. Currey JD (1988) Strain rate and mineral content in fracture models of bone. J Orthop Res 6:32–38

    Article  Google Scholar 

  32. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16

    Article  Google Scholar 

  33. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg (Am) 59(7):954–962

    Article  Google Scholar 

  34. Lai WM, Mow VC, Roth V (1981) Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J Biomech Eng 103(2):61–66

    Article  Google Scholar 

  35. Radin EL, Paul IL, Lowy M (1970) A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. J Bone Joint Surg (Am) 52:444–456

    Article  Google Scholar 

  36. Silyn-Roberts H, Broom ND (1990) Fracture behaviour of cartilage-on-bone in response to repeated impact loading. Connect Tissue Res 24(143–156)

    Google Scholar 

  37. Race A, Broom ND, Robertson P (2000) Effect of loading rate and hydration on the mechanical properties of the disc. Spine 25(6):662–669

    Article  Google Scholar 

  38. Messner K (1993) Hydroxylapatite supported Dacron plugs for repair of isolated full-thickness osteochondral defects of the rabbit femoral condyle: mechanical and histological evaluations from 6–48 weeks. J Biomed Mater Res 12:1527–1532

    Article  Google Scholar 

  39. Zioupos P, Casinos A (1998) Cumulative damage and the response of human bone in two-step loading fatigue. J Biomech 31:825–833

    Article  Google Scholar 

  40. Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG (2000) In vitro compression testing of fiber-reinforced, bioabsorbable, porous implants. In: Mauli Agrawal C, Parr JE, Lin ST (eds) Synthetic bioabsorbable polymers for implants. American Society for Testing and Materials, West Conshohocken, pp 124–135

    Chapter  Google Scholar 

  41. Buschmann MD, Soulhat J, Shirazi-Adl A, Jurvelin JS, Hunziker EB (1998) Confined compression of articular cartilage: linearity in ramp and sinusoidal tests and the importance of interdigitation and incomplete confinement. J Biomech 31:171–178

    Article  Google Scholar 

  42. Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 19:1113–1121

    Article  Google Scholar 

  43. Korhonen RK, Laasanena MS, Toyras J, Rieppob J, Hirvonena J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35:903–909

    Article  Google Scholar 

  44. Perie D, Korda D, Iatridis JC (2005) Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech 38:2164–2171

    Article  Google Scholar 

  45. Soltz MA, Ateshian GA (1998) Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech 31:927–934

    Article  Google Scholar 

  46. Martin RB (2003) Fatigue microdamage as an essential element of bone mechanics and biology. Calcif Tissue Int 73:101–107

    Article  Google Scholar 

  47. Taylor M, Tanner KE (1997) Fatigue failure of cancellous bone: a possible cause of implant migration and loosening. J Bone Joint Surg 79-B:181–182

    Article  Google Scholar 

  48. Pattin CA, Calert WE, Carter DR (1996) Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 29(1):69–79

    Article  Google Scholar 

  49. O’Brien FJ, Taylor D, Lee TC (2003) Microcrack accumulation at different intervals during fatigue testing of compact bone. J Biomech 36:973–980

    Article  Google Scholar 

  50. Yeni YN, Fyhrie DP (2002) Fatigue damage-fracture mechanics interaction in cortical bone. Bone 30(3):509–514

    Article  Google Scholar 

  51. Cotton JR, Winwood K, Zioupos P, Taylor M (2005) Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples. J Biomech Eng 127:213–219

    Article  Google Scholar 

  52. Fleck C, Eifler D (2003) Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. J Biomech 36:179–189

    Article  Google Scholar 

  53. Yamamoto E, Crawford RP, Chan DD, Keaveny TM (2006) Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 39:1812–1818

    Article  Google Scholar 

  54. Zioupos P, Wang XT, Currey JD (1996) The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. Clin Biomech 11:365–375

    Article  Google Scholar 

  55. Moore TLA, Gibson LJ (2003) Fatigue microdamage in bovine trabecular bone. J Biomech Eng 125:769–776

    Article  Google Scholar 

  56. Moore TLA, Gibson LJ (2003) Fatigue of bovine trabecular bone. J Biomech Eng 125:761–768

    Article  Google Scholar 

  57. Dendorfer S, Maier HJ, Taylor D, Hammer J (2008) Anisotropy of the fatigue behaviour of cancellous bone. J Biomech 41:636–641

    Article  Google Scholar 

  58. Carter DR, Hayes WC (1977) Compact bone fatigue damage – I. Residual strength and stiffness. J Biomech 10:325–337

    Article  Google Scholar 

  59. Rapillard L, Charlebois M, Zysset P (2006) Compressive fatigue behavior of human vertebral trabecular bone. J Biomech 39:2133–2139

    Article  Google Scholar 

  60. Dendorfer S, Maier HJ, Hammer J (2009) Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale. J Mech Behav Biomed Mater 2(1):113–119

    Article  Google Scholar 

  61. Palissery V, Taylor M, Browne M (2004) Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices. J Mater Sci Mater Med 15(1):61–67

    Article  Google Scholar 

  62. Meyer RW, Pruitt LA (2001) The effect of cyclic true strain on the morphology, structure, and relaxation behavior of ultra high molecular weight polyethylene. Polymer 42:5293–5306

    Article  Google Scholar 

  63. Topolinski T, Cichanski A, Mazurkiewicz A, Nowicki K (2011) Study of the behavior of the trabecular bone under cyclic compression with stepwise increasing amplitude. J Mech Behav Biomed Mater 4(8):1755–1763

    Article  Google Scholar 

  64. Guillén T, Ohrndorf A, Tozzi G, Tong J, Christ H-J (2012) Compressive fatigue behavior of bovine cancellous bone and bone analogous materials under multi-step loading conditions. Adv Eng Mater 14(5):B199–B207

    Article  Google Scholar 

  65. Michel MC, Guo X-DE, Gibson LJ, McMahon TA, Hayes WC (1993) Compressive fatigue behavior of bovine trabecular bone. J Biomech 26(4–5):453–463

    Article  Google Scholar 

  66. Zioupos P, Gresle M, Winwood K (2008) Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects. J Biomed Mater Res A 86A(3):627–636

    Article  Google Scholar 

  67. Nazarian A, Muller R (2004) Time-lapsed microstructural imaging of bone failure behavior. J Biomech 37(1):55–65

    Article  Google Scholar 

  68. Nazarian A, Stauber M, Zurakowski D, Snyder BD, Muller R (2006) The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone 39(6):1196–1202. doi:10.1016/j.bone.2006.06.013

    Article  Google Scholar 

  69. Stops AJF, Harrison NM, Haugh MG, O’Brien FJ, McHugh PE (2010) Local and regional mechanical characterisation of a collagen-glycosaminoglycan scaffold using high-resolution finite element analysis. J Mech Behav Biomed Mater 3(4):292–302

    Article  Google Scholar 

  70. Thurner PJ, Wyss P, Voide R, Stauber M, Stampanoni M, Sennhauser U, Müller R (2006) Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone 39(2):289–299

    Article  Google Scholar 

  71. Buffiere JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305

    Article  Google Scholar 

  72. Youssef S, Maire E, Gaertner R (2005) Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater 53(3):719–730

    Article  Google Scholar 

  73. Bay BK, Smith TS, Fyrhie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226

    Article  Google Scholar 

  74. Germaneau A, Doumalin P, Dupre JC (2007) 3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks. Strain 43(3):207–218

    Article  Google Scholar 

  75. Liu L, Morgan EF (2007) Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J Biomech 40(15):3516–3520

    Article  Google Scholar 

  76. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos A: Appl Sci Manuf 39(8):1253–1265

    Article  Google Scholar 

  77. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–1320

    Article  Google Scholar 

  78. Malekipour F, Oetomo D, Vee Sin Lee P (2012) Osteochondral injury during simulated drop landing compression: pre and post impact micro-computed tomography. Paper presented at the 30th annual conference of biomechanics in sports, University of Melbourne, Australia

    Google Scholar 

  79. Madi K, Booker A, Tozzi G, Zhang Z-Y, Hsu Y-H, Lupton C, Tong J, Cossey A, Au A, N’Guyen F (2011) Viscoelastic modelling and full-field strain computation of biphasic scaffold for osteochondral defect repair. Paper presented at the ECCOMAS – international conference on tissue engineering, Lisbon, Portugal, June 2–4

    Google Scholar 

  80. Kalyanam S, Yapp RD, Insana MF (2009) Poro-viscoelastic behavior of gelatin hydrogels under compression-Implications for bioelasticity imaging. J Biomech Eng 131(8):1–13

    Article  Google Scholar 

  81. DiSilvestro MR, Suh J-KF (2001) A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J Biomech 34:519–525

    Article  Google Scholar 

  82. Linde F, Hvid I (1989) The effect of constraint on the mechanical behaviour of trabecular bone specimens. J Biomech 22(5):485–490

    Article  Google Scholar 

  83. Caler WE, Carter DR (1989) Bone creep-fatigue damage accumulation. J Biomech 22:625–635

    Article  Google Scholar 

  84. Haddock SM, Yeh OC, Mummaneni PV, Rosenberg WS, Keaveny TM (2004) Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech 37:181–187

    Article  Google Scholar 

  85. Fray ME, Altstadt V (2003) Fatigue behaviour of multiblock thermoplastic elastomers. 1. Stepwise increasing load testing of poly(aliphatic/aromatic-ester) copolymers. Polymer 44:4635–4642

    Article  Google Scholar 

  86. Linde F, Hvid I (1987) Stiffness behaviour of trabecular bone specimens. J Biomech 20(1):83–89

    Article  Google Scholar 

  87. Doubea M, Kłosowskia MM, Arganda-Carrerasb I, Cordelièresc FP, Doughertyd RP, Jacksone JS, Schmidf B, Hutchinsong JR, Shefelbinea SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079

    Article  Google Scholar 

  88. Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Ries M, Lane N, Majumdar S (2002) Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum 46(2):385–393

    Article  Google Scholar 

  89. Ding M, Hvid I (2000) Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 26(3):291–295

    Article  Google Scholar 

  90. Tozzi G, Zhang Q-H, Tong J (2012) 3D real-time micromechanical compressive behaviour of bone–cement interface: experimental and finite element studies. J Biomech 45(2):356–363

    Article  Google Scholar 

  91. Bursac PM, Obitz TW, Eisenberg SR, Stamenovic D (1999) Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J Biomech 32:1125–1130

    Article  Google Scholar 

  92. Kelly N, McGarry JP (2012) Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J Mech Behav Biomed Mater 9:184–197

    Article  Google Scholar 

  93. Yang S, Leong K-F, Du Z, Chua C-K (2001) Review: the design of scaffolds for use in tissue engineering. Part I Traditional factors. Tissue Eng 7(6):679–689

    Article  Google Scholar 

  94. Augat P, Link T, Lang TF, Lin JC, Majumdar S, Genant HK (1998) Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. Med Eng Phys 20:124–131

    Article  Google Scholar 

  95. Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A (1997) Systematic and random errors in compression testing of trabecular bone. J Orthop Res 15(1):101–110

    Article  Google Scholar 

  96. Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31(7):601–608

    Article  Google Scholar 

  97. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27(4):375–389

    Article  Google Scholar 

  98. Linde F, Hvid I, Madsen F (1992) The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. J Biomech 25(4):359–368

    Article  Google Scholar 

  99. Poumarat G, Squire P (1993) Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft. Biomaterials 14(5):337–340

    Article  Google Scholar 

  100. Swartz DE, Wittenberg RH, Shea M, White AA III, Hayes WC (1991) Physical and mechanical properties of calf lumbosacral trabecular bone. J Biomech 24(11):1059–1068

    Article  Google Scholar 

  101. Keaveny TM, Wachtel EF, Ford CM, Hayes WC (1994) Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech 27(9):1137–1146

    Article  Google Scholar 

  102. Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 16(12):965–969

    Article  Google Scholar 

  103. Kuhn JL, Goldstein SA, Ciarelli MJ, Matthews LS (1989) The limitations of canine trabecular bone as a model for human: a biomechanical study. J Biomech 22(2):95–107

    Article  Google Scholar 

  104. Garcia AJ, Reyes CD (2005) Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 84(5):407–413

    Article  Google Scholar 

  105. Kong HJ, Polte TR, Alsberg E, Mooney DJ (2005) FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci U S A 102(12):4300–4305

    Article  Google Scholar 

  106. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  107. Schaffler MB, Radin EL, Burr DB (1989) Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10:207–214

    Article  Google Scholar 

  108. Zioupos P, Wang XT, Currey JD (1996) Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J Biomech 29:989–1002

    Article  Google Scholar 

  109. Moore TLA, O’Brien FJ, Gibson LJ (2004) Creep does not contribute to fatigue in bovine trabecular bone. J Biomech Eng 126(3):321–329

    Article  Google Scholar 

  110. Burgin LV, Aspden RM (2008) Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J Mater Sci 19:703–711

    Google Scholar 

  111. Houchin ML, Neuenswander SA, Topp EM (2007) Effect of excipients on PLGA film degradation and the stability of an incorporated peptide. J Control Release 117(3):413–420

    Article  Google Scholar 

  112. Kranz H, Ubrich N, Maincent P, Bodmeier R (2000) Physicomechanical properties of biodegradable poly(D, L-lactide) and poly(D, L-lactide-co-glycolide) films in the dry and wet states. J Pharm Sci 89(12):1558–1566

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Smith & Nephew for providing the samples and the University of Portsmouth for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Tong, J., Hsu, YH., Madi, K., Cossey, A., Au, A. (2017). Characterisation of Hydrogel Scaffolds Under Compression. In: Li, Q., Mai, YW. (eds) Biomaterials for Implants and Scaffolds. Springer Series in Biomaterials Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53574-5_11

Download citation

Publish with us

Policies and ethics