Skip to main content

Permeation Principle and Models

  • Chapter
  • First Online:
Mixed Conducting Ceramic Membranes

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1163 Accesses

Abstract

Although the principle of oxygen permeation through an MIEC membrane is simple, it is difficult to develop a proper mathematical equation to describe the processes including oxygen exchange reactions on gas–solid interfaces and ambipolar diffusion in membrane bulk. In this chapter, the classical Wagner equation is introduced firstly. Only the oxygen permeation through an MIEC membrane is dominated by the ambipolar diffusion in membrane bulk; the permeation process can be well described by the Wagner equation. However, most of membranes are limited by the joint control of interfacial exchange and bulk diffusion. Therefore, three permeation models were developed by researchers to include the influence of oxygen exchange reactions on the gas–solid interfaces. The derivation and applications of the three models are separately introduced in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouwmeester HJM, Burggraaf AJ (1997) Dense ceramic membranes for oxygen separation. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, pp 481–553

    Chapter  Google Scholar 

  2. Kim S, Yang YL, Jacobson AJ, Abeles B (1999) Oxygen surface exchange in mixed ionic electronic conductor membranes. Solid State Ionics 121:31–36

    Article  CAS  Google Scholar 

  3. Lee TH, Yang YL, Jacobson AJ, Abeles B, Zhou M (1997) Oxygen permeation in dense SrCo0.8Fe0.2O3−δ membranes: surface exchange kinetics versus bulk diffusion. Solid State Ionics 100:77–85

    Article  CAS  Google Scholar 

  4. Kim S, Yang YL, Jacobson AJ, Abeles B (1999) Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation. Solid State Ionics 106:189–195

    Article  Google Scholar 

  5. Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54:3839–3850

    Article  CAS  Google Scholar 

  6. Lin YS, Wang WJ, Han J (1994) Oxygen permeation through thin mixed-conducting solid oxide membranes. AIChE J 40:786–798

    Article  CAS  Google Scholar 

  7. Zhu XF, Liu HY, Cong Y, Yang WS (2012) Permeation model and experimental investigation of mixed conducting membranes. AIChE J 58:1744–1754

    Article  CAS  Google Scholar 

  8. Wang HH, Cong Y, Yang WS (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen-permeable membrane. J Membr Sci 210:259–271

    Article  CAS  Google Scholar 

  9. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) Nonstoichiometry of the perovskite–type oxides La1−xSrxCoO3−δ. J Solid State Chem 80:102–111

    Article  CAS  Google Scholar 

  10. Huang K, Goodenough JB (2001) Oxygen permeation through cobalt–containing perovskites surface oxygen exchange vs. lattice oxygen diffusion. J Electrochem Soc 148:E203–E214

    Article  CAS  Google Scholar 

  11. Kim S, Yang YL, Jacobson AJ, Abeles B (1998) Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation. Solid State Ionics 106:189–195

    Article  CAS  Google Scholar 

  12. Tan XY, Li K (2002) Modeling of air separation in a LSCF hollow-fiber membrane module. AIChE J 48:1469–1477

    Article  CAS  Google Scholar 

  13. Tan XY, Li K (2007) Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE J 53:838–845

    Article  CAS  Google Scholar 

  14. Asadi AA, Behrouzifar A, Iravaninia M, Mohammadi T, Pak A (2012) Preparation and oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite-type membranes: experimental study and mathematical modeling. Ind Eng Chem Res 51:3069–3080

    Article  CAS  Google Scholar 

  15. Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion – Part I: intermediate-fidelity modeling. Energy 36:4701–4720

    Article  CAS  Google Scholar 

  16. Ghadimi A, Alaee MA, Behrouzifar A, Asadi AA, Mohammadi T (2011) Oxygen permeation of BaxSr1−xCo0.8Fe0.2O3−δ perovskite-type membrane: experimental and modeling. Desalination 270:64–75

    Article  CAS  Google Scholar 

  17. Tan XY, Wang ZG, Liu H, Liu SM (2008) Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibre membranes by surface modifications. J Membr Sci 324:128–135

    Article  CAS  Google Scholar 

  18. Zhu XF, Cong Y, Yang WS (2006) Oxygen permeability and structural stability of BaCe0.15Fe0.85O3−δ membranes. J Membr Sci 283:38–44

    Article  CAS  Google Scholar 

  19. Virkar AV (2005) Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes. J Power Sources 147:8–31

    Article  CAS  Google Scholar 

  20. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188

    Article  CAS  Google Scholar 

  21. Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  CAS  Google Scholar 

  22. Bucher E, Egger A, Ried P, Sitte W, Holtappels P (2008) Oxygen nonstoichiometry and exchange kinetics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 179:1032–1035

    Article  CAS  Google Scholar 

  23. Liu Y, Zhu Y, Li MR, Zhu XF, Yang WS (2016) Oxygen transport kinetics of MIEC membrane with different catalysts. AIChE J. doi:10.1002/aic.15239

    Google Scholar 

  24. Han N, Zhang SG, Meng XX, Yang NT, Meng B, Tan XY, Liu SM (2016) Effect of enhanced oxygen reduction activity on oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3−δ membrane decorated by K2NiF4−type oxide. J Alloys Compd 654:280–289

    Article  CAS  Google Scholar 

  25. Fuilarton IC, Jacobs JP, van Benthem HE, Kilner JA, Brongersma HH, Scanlon P, Steele BCH (1995) Study of oxygen ion transport in acceptor doped samarium cobalt oxide. Ionics 1:51–58

    Article  Google Scholar 

  26. Li Y, Gerdes K, Horita T, Liu X (2013) Surface exchange and bulk diffusivity of LSCF as SOFC cathode: electrical conductivity relaxation and isotope exchange characterizations. J Electrochem Soc 160:343–350

    Article  Google Scholar 

  27. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics 53:597–605

    Article  Google Scholar 

  28. Liu Y, Zhu XF, Yang WS (2015) Degradation mechanism analysis of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes at intermediate-low temperatures. AIChE J 61:3879–3888

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zhu, X., Yang, W. (2017). Permeation Principle and Models. In: Mixed Conducting Ceramic Membranes. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53534-9_5

Download citation

Publish with us

Policies and ethics