Skip to main content

Abstract

Hydrogen is considered as one of the promising alternative fuels to replace oil, but its storage remains to be a significant challenge. The main hydrogen storage technologies can be broadly classified as physical, chemical, and hybrid methods. The physical methods rely on compression and liquefaction of hydrogen, and currently compressed hydrogen storage is the most mature technology that is commercially available. The chemical methods utilize materials to store hydrogen, and hydrogen can be extracted by reversible (on-board regenerable) or irreversible (off-board regenerable) chemical reactions depending on the type of material. The hybrid methods take advantage of both physical and chemical storage methods. The most prominent hybrid method is the cryo-adsorption hydrogen storage which utilizes physisorption-based porous materials. In this chapter, all of the main hydrogen storage technologies are discussed in detail along with their limitations and advantages.

Author Contributions

I wrote this chapter without assistance from anyone else.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Porous materials and physisorption materials are used interchangeably throughout the text.

  2. 2.

    Excess capacity is the capacity excluding compressed gaseous hydrogen at that temperature. In other words, excess capacity is the amount of hydrogen stored because of the presence of the porous material.

  3. 3.

    Total hydrogen storage capacity reported here does not include the weight of the tank or any other balance of the plant components.

References

  1. Anonymous, BP Energy Outlook 2035 (2015)

    Google Scholar 

  2. G. Maggio, G. Cacciola, When will oil, natural gas, and coal peak? Fuel 98, 111–123 (2012)

    CAS  Google Scholar 

  3. J. Houghton, Global warming. Rep. Prog. Phys. 68, 1343–1403 (2005)

    Google Scholar 

  4. M. Asif, T. Muneer, Energy supply, its demand and security issues for developed and emerging economies. Renew. Sust. Energ. Rev. 11, 1388–1413 (2007)

    Google Scholar 

  5. F. Barbir, T. Veziroǧlu, H. Plass, Environmental damage due to fossil fuels use. Int. J. Hydrog. Energy 15, 739–749 (1990)

    CAS  Google Scholar 

  6. M.K. Hubbert, Nuclear energy and the fossil fuel, in Drilling and production practice (American Petroleum Institute, Washington, DC, 1956)

    Google Scholar 

  7. R. Agrawal, N.R. Singh, F.H. Ribeiro, W.N. Delgass, Sustainable fuel for the transportation sector. Proc. Natl. Acad. Sci. 104, 4828–4833 (2007)

    CAS  Google Scholar 

  8. R.A. Kerr, Peak oil production may already be here. Science 331, 1510–1511 (2011)

    CAS  Google Scholar 

  9. J.P. Bruce, H.-S. Yi, E.F. Haites, Climate change 1995: Economic and social dimensions of climate change: Contribution of Working Group III to the second assessment report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  10. I.A. Mendelssohn, G.L. Andersen, D.M. Baltz, R.H. Caffey, K.R. Carman, J.W. Fleeger, S.B. Joye, Q. Lin, E. Maltby, E.B. Overton, Oil impacts on coastal wetlands: implications for the Mississippi River Delta ecosystem after the Deepwater Horizon oil spill. Bioscience 62, 562–574 (2012)

    Google Scholar 

  11. G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, The hydrogen economy. Phys. Today 57, 39–44 (2004)

    CAS  Google Scholar 

  12. H.F. Abbas, W.W. Daud, Hydrogen production by methane decomposition: a review. Int. J. Hydrog. Energy 35, 1160–1190 (2010)

    CAS  Google Scholar 

  13. R. Gerboni, E. Salvador, Hydrogen transportation systems: elements of risk analysis. Energy 34, 2223–2229 (2009)

    Google Scholar 

  14. M. Felderhoff, C. Weidenthaler, R. von Helmolt, U. Eberle, Hydrogen storage: the remaining scientific and technological challenges. Phys. Chem. Chem. Phys. 9, 2643–2653 (2007)

    CAS  Google Scholar 

  15. W. Lattin, V. Utgikar, Transition to hydrogen economy in the United States: a 2006 status report. Int. J. Hydrog. Energy 32, 3230–3237 (2007)

    CAS  Google Scholar 

  16. Anonymous, Technical system targets: onboard hydrogen storage for light-duty fuel cell vehicles. http://energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles. Accessed 3 Mar 2016

  17. U. Bossel, B. Eliasson, G. Taylor, The future of the hydrogen economy: bright or bleak? Cogener. Distrib. Gener. J 18, 29–70 (2003)

    Google Scholar 

  18. R. Shinnar, The hydrogen economy, fuel cells, and electric cars. Technol. Soc. 25, 455–476 (2003)

    Google Scholar 

  19. K.G. Hoyer, E. Holden, Alternative fuels and sustainable mobility: is the future road paved by biofuels, electricity or hydrogen? Int. J. Altern. Propuls. 1, 352–368 (2007)

    Google Scholar 

  20. U. Eberle, M. Felderhoff, F. Schueth, Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009)

    CAS  Google Scholar 

  21. S.G. Chalk, J.F. Miller, Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J. Power Sources 159, 73–80 (2006)

    CAS  Google Scholar 

  22. Anonymous, US Department of Energy, Office of Energy Efficiency and Renewable Energy, and The FreedomCAR and Fuel Partnership. Targets for onboard hydrogen storage systems for light-duty vehicles (2009)

    Google Scholar 

  23. C. Read, G. Thomas, G. Ordaz, S. Satyapal, US Department of Energy’s system targets for on-board vehicular hydrogen storage. Mater. Matters 2, 3–5 (2007)

    Google Scholar 

  24. Anonymous, Status of hydrogen storage technologies. http://energy.gov/eere/fuelcells/status-hydrogen-storage-technologies. Accessed 3 Mar 2016

  25. B.P. Tarasov, M.V. Lototskii, V.A. Yartys, Problem of hydrogen storage and prospective uses of hydrides for hydrogen accumulation. Russ. J. Gen. Chem. 77, 694–711 (2007)

    CAS  Google Scholar 

  26. T. Hua, R. Ahluwalia, J.-K. Peng, M. Kromer, S. Lasher, K. McKenney, K. Law, J. Sinha, Technical assessment of compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrog. Energy 36, 3037–3049 (2011)

    CAS  Google Scholar 

  27. R. von Helmolt, U. Eberle, Fuel cell vehicles: status 2007. J. Power Sources 165, 833–843 (2007)

    Google Scholar 

  28. L. Zhou, Progress and problems in hydrogen storage methods. Renew. Sust. Energ. Rev. 9, 395–408 (2005)

    CAS  Google Scholar 

  29. C.W. Hamilton, R.T. Baker, A. Staubitz, I. Manners, B–N compounds for chemical hydrogen storage. Chem. Soc. Rev. 38, 279–293 (2009)

    CAS  Google Scholar 

  30. J. Wolf, Liquid-hydrogen technology for vehicles. MRS Bull. 27, 684–687 (2002)

    CAS  Google Scholar 

  31. S.M. Aceves, F. Espinosa-Loza, E. Ledesma-Orozco, T.O. Ross, A.H. Weisberg, T.C. Brunner, O. Kircher, High-density automotive hydrogen storage with cryogenic capable pressure vessels. Int. J. Hydrog. Energy 35, 1219–1226 (2010)

    CAS  Google Scholar 

  32. R. Ahluwalia, T. Hua, J.-K. Peng, S. Lasher, K. McKenney, J. Sinha, M. Gardiner, Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrog. Energy 35, 4171–4184 (2010)

    CAS  Google Scholar 

  33. T.K. Hoang, D.M. Antonelli, Exploiting the Kubas interaction in the design of hydrogen storage materials. Adv. Mater. 21, 1787–1800 (2009)

    CAS  Google Scholar 

  34. A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron, C. Emmenegger, Hydrogen storage properties of LiBH 4. J. Alloys Compd. 356, 515–520 (2003)

    Google Scholar 

  35. I. Jain, P. Jain, A. Jain, Novel hydrogen storage materials: a review of lightweight complex hydrides. J. Alloys Compd. 503, 303–339 (2010)

    CAS  Google Scholar 

  36. K.M. Thomas, Hydrogen adsorption and storage on porous materials. Catal. Today 120, 389–398 (2007)

    CAS  Google Scholar 

  37. A. Zaluska, L. Zaluski, J. Ström-Olsen, Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 72, 157–165 (2001)

    CAS  Google Scholar 

  38. D. Chandra, J.J. Reilly, R. Chellappa, Metal hydrides for vehicular applications: the state of the art. J. Miner. 58, 26–32 (2006)

    CAS  Google Scholar 

  39. T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata, Chemical bonding of hydrogen in MgH2. Appl. Phys. Lett. 81, 2008–2010 (2002)

    CAS  Google Scholar 

  40. W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 315, 237–242 (2001)

    CAS  Google Scholar 

  41. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292, 247–252 (1999)

    CAS  Google Scholar 

  42. G. Principi, F. Agresti, A. Maddalena, S.L. Russo, The problem of solid state hydrogen storage. Energy 34, 2087–2091 (2009)

    CAS  Google Scholar 

  43. B. Bogdanović, M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 253, 1–9 (1997)

    Google Scholar 

  44. Y. Song, Z. Guo, Electronic structure, stability and bonding of the Li-NH hydrogen storage system. Phys. Rev. B 74, 195120 (2006)

    Google Scholar 

  45. J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita, T. Sakai, Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. J. Phys. Chem. B 105, 11214–11220 (2001)

    CAS  Google Scholar 

  46. S.-I. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S.-I. Towata, A. Züttel, Dehydriding and rehydriding reactions of LiBH4. J. Alloys Compd. 404, 427–430 (2005)

    Google Scholar 

  47. P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002)

    CAS  Google Scholar 

  48. B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy 32, 1121–1140 (2007)

    CAS  Google Scholar 

  49. M. Resan, M.D. Hampton, J.K. Lomness, D.K. Slattery, Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4. Int. J. Hydrog. Energy 30, 1413–1416 (2005)

    CAS  Google Scholar 

  50. W. Luo, (LiNH2–MgH2): a viable hydrogen storage system. J. Alloys Compd. 381, 284–287 (2004)

    CAS  Google Scholar 

  51. Y. Nakamori, S.-I. Orimo, Destabilization of Li-based complex hydrides. J. Alloys Compd. 370, 271–275 (2004)

    CAS  Google Scholar 

  52. A. Sudik, J. Yang, D. Halliday, C. Wolverton, Hydrogen storage properties in (LiNH2)2-LiBH4-(MgH2) X mixtures (X = 0.0–1.0). J. Phys. Chem. C 112, 4384–4390 (2008)

    CAS  Google Scholar 

  53. A. Borgschulte, E. Callini, B. Probst, A. Jain, S. Kato, O. Friedrichs, A. Remhof, M. Bielmann, A. Ramirez-Cuesta, A. Züttel, Impurity gas analysis of the decomposition of complex hydrides. J. Phys. Chem. C 115, 17220–17226 (2011)

    CAS  Google Scholar 

  54. T. Ichikawa, N. Hanada, S. Isobe, H. Leng, H. Fujii, Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J. Phys. Chem. B 108, 7887–7892 (2004)

    CAS  Google Scholar 

  55. D.E. Demirocak, S.S. Srinivasan, M.K. Ram, J.N. Kuhn, R. Muralidharan, X. Li, D.Y. Goswami, E.K. Stefanakos, Reversible hydrogen storage in the Li–Mg–N–H system–The effects of Ru doped single walled carbon nanotubes on NH3 emission and kinetics. Int. J. Hydrog. Energy 38, 10039–10049 (2013)

    CAS  Google Scholar 

  56. R.E. Morris, P.S. Wheatley, Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008)

    CAS  Google Scholar 

  57. M. Nijkamp, J. Raaymakers, A. Van Dillen, K. De Jong, Hydrogen storage using physisorption–materials demands. Appl. Phys. A 72, 619–623 (2001)

    CAS  Google Scholar 

  58. J.L. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004)

    CAS  Google Scholar 

  59. M.E. Davis, Ordered porous materials for emerging applications. Nature 417, 813–821 (2002)

    CAS  Google Scholar 

  60. H. Zhang, A.I. Cooper, Synthesis and applications of emulsion-templated porous materials. Soft Matter 1, 107–113 (2005)

    CAS  Google Scholar 

  61. M. Toyoda, Y. Nanbu, T. Kito, M. Hiranob, M. Inagaki, Preparation and performance of anatase-loaded porous carbons for water purification. Desalination 159, 273–282 (2003)

    CAS  Google Scholar 

  62. K. Nakanishi, N. Tanaka, Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40, 863–873 (2007)

    CAS  Google Scholar 

  63. A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2420 (1997)

    CAS  Google Scholar 

  64. P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 118, 6120–6124 (2006)

    Google Scholar 

  65. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)

    CAS  Google Scholar 

  66. K. Ssing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewsks, Reporting physisorption data for gas/solid system. Pure Appl. Chem. 57, 603–619 (1985)

    Google Scholar 

  67. S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard Iii, Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008)

    CAS  Google Scholar 

  68. Z. Yang, Y. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129, 1673–1679 (2007)

    CAS  Google Scholar 

  69. T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. 121, 9621–9624 (2009)

    Google Scholar 

  70. J. Germain, J. Hradil, J.M. Fréchet, F. Svec, High surface area nanoporous polymers for reversible hydrogen storage. Chem. Mater. 18, 4430–4435 (2006)

    CAS  Google Scholar 

  71. N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006)

    CAS  Google Scholar 

  72. J.-X. Jiang, F. Su, A. Trewin, C.D. Wood, H. Niu, J.T. Jones, Y.Z. Khimyak, A.I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 130, 7710–7720 (2008)

    CAS  Google Scholar 

  73. M. Rzepka, P. Lamp, M. De la Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes. J. Phys. Chem. B 102, 10894–10898 (1998)

    CAS  Google Scholar 

  74. B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 9, 2181–2184 (2008)

    CAS  Google Scholar 

  75. H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata, Y. Murakami, Hydrogen storage capacity of commercially available carbon materials at room temperature. Appl. Phys. Lett. 82, 1105–1107 (2003)

    CAS  Google Scholar 

  76. S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage. Langmuir 22, 1688–1700 (2006)

    CAS  Google Scholar 

  77. H. Frost, T. Düren, R.Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006)

    CAS  Google Scholar 

  78. S.-H. Jhi, J. Ihm, Developing high-capacity hydrogen storage materials via quantum simulations. MRS Bull. 36, 198–204 (2011)

    CAS  Google Scholar 

  79. T.M. Chung, Y. Jeong, Q. Chen, A. Kleinhammes, Y. Wu, Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption. J. Am. Chem. Soc. 130, 6668–6669 (2008)

    CAS  Google Scholar 

  80. S.S. Han, W.A. Goddard, Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129, 8422–8423 (2007)

    CAS  Google Scholar 

  81. Y. Li, R.T. Yang, Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006)

    CAS  Google Scholar 

  82. W. Zhou, H. Wu, T. Yildirim, Enhanced H2 adsorption in isostructural metal–organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J. Am. Chem. Soc. 130, 15268–15269 (2008)

    CAS  Google Scholar 

  83. O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)

    CAS  Google Scholar 

  84. J.L. Rowsell, O.M. Yaghi, Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005)

    CAS  Google Scholar 

  85. U.B. Demirci, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun, P. Miele, Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells 10, 335–350 (2010)

    CAS  Google Scholar 

  86. J. Graetz, J. Reilly, V. Yartys, J. Maehlen, B. Bulychev, V. Antonov, B. Tarasov, I. Gabis, Aluminum hydride as a hydrogen and energy storage material: past, present and future. J. Alloys Compd. 509, S517–S528 (2011)

    CAS  Google Scholar 

  87. A. Staubitz, A.P. Robertson, I. Manners, Ammonia-borane and related compounds as dihydrogen sources. Chem. Rev. 110, 4079–4124 (2010)

    CAS  Google Scholar 

  88. R.H. Crabtree, Hydrogen storage in liquid organic heterocycles. Energy Environ. Sci. 1, 134–138 (2008)

    CAS  Google Scholar 

  89. D. Teichmann, W. Arlt, P. Wasserscheid, R. Freymann, A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ. Sci. 4, 2767–2773 (2011)

    CAS  Google Scholar 

  90. A. Klerke, C.H. Christensen, J.K. Nørskov, T. Vegge, Ammonia for hydrogen storage: challenges and opportunities. J. Mater. Chem. 18, 2304–2310 (2008)

    CAS  Google Scholar 

  91. J. Graetz, New approaches to hydrogen storage. Chem. Soc. Rev. 38, 73–82 (2009)

    CAS  Google Scholar 

  92. Z. Huang, T. Autrey, Boron–nitrogen–hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy Environ. Sci. 5, 9257–9268 (2012)

    CAS  Google Scholar 

  93. B. Peng, J. Chen, Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ. Sci. 1, 479–483 (2008)

    CAS  Google Scholar 

  94. M.E. Bluhm, M.G. Bradley, R. Butterick, U. Kusari, L.G. Sneddon, Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc. 128, 7748–7749 (2006)

    CAS  Google Scholar 

  95. A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S. Smith, B.D. Kay, B. Schmid, W. Shaw, Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. 44, 3578–3582 (2005)

    CAS  Google Scholar 

  96. F.H. Stephens, V. Pons, R.T. Baker, Ammonia–borane: the hydrogen source par excellence? Dalton Trans. (25), 2613–2626 (2007)

    Google Scholar 

  97. R. Ahluwalia, J. Peng, Automotive hydrogen storage system using cryo-adsorption on activated carbon. Int. J. Hydrog. Energy 34, 5476–5487 (2009)

    CAS  Google Scholar 

  98. J. Li, E. Wu, J. Song, F. Xiao, C. Geng, Cryoadsorption of hydrogen on divalent cation-exchanged X-zeolites. Int. J. Hydrog. Energy 34, 5458–5465 (2009)

    CAS  Google Scholar 

  99. M. Hirscher, Hydrogen storage by cryoadsorption in ultrahigh-porosity metal-organic frameworks. Angew. Chem. Int. Ed. 50, 581–582 (2011)

    CAS  Google Scholar 

  100. L. Wang, A. Husar, T. Zhou, H. Liu, A parametric study of PEM fuel cell performances. Int. J. Hydrog. Energy 28, 1263–1272 (2003)

    CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges the support from the College of Engineering at the Texas A&M University – Kingsville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dervis Emre Demirocak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Demirocak, D.E. (2017). Hydrogen Storage Technologies. In: Chen, YP., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53514-1_4

Download citation

Publish with us

Policies and ethics