Skip to main content

Komplikationsmanagement

  • Chapter
  • First Online:
Mechanische Herz-Kreislauf-Unterstützung

Zusammenfassung

Trotz beeindruckender Fortschritte der mechanischen Herz-Kreislauf-Therapie in den vergangenen Jahren erleiden nach wie vor viele betroffene Patienten systemassoziierte Komplikationen mit teilweise schwerwiegendem bis letalen Ausgang. Prothrombotische und hämorrhagische Komplikationen sowie Infektionen stehen bei allen Systemen zur Kurz- und Langzeitanwendung im Vordergrund. Insbesondere auch die Auswirkung dieser Komplikationen auf eine avisierte Herztransplantation müssen berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Zu 9.1

  • Adamson RM, Dembitsky WP, Baradarian S, Chammas J, May-Newman K, et al. (2011) Aortic valve closure associated with HeartMate left ventricular device support: technical considerations and long-term results. J Heart Lung Transplant 30: 576–582

    Article  PubMed  Google Scholar 

  • Amir O, Bracey AW, Smart FW, Delgado RM 3rd, Shah N, Kar B (2005) A successful anticoagulation protocol for the first HeartMate II implantation in the United States. Tex Heart Inst J 32: 399–401

    PubMed  PubMed Central  Google Scholar 

  • Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR, et al. (1998) Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg 65: 340–345

    Article  CAS  PubMed  Google Scholar 

  • Atz AM, Lefler AK, Fairbrother DL, Uber WE, Bradley SM (2002) Sildenaphil augments the effect of inhaled nitric oxide for postoperative pulmonary hypertensive crises. J Thorac Cardiovasc Surg 124: 628–629

    Article  PubMed  Google Scholar 

  • Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P, et al. (2011) Right heart failure and „failure to thrive“ after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant 30: 888–895

    PubMed  Google Scholar 

  • Boehme AK, Pamboukian SV, George JF, Dillon C, Levitan EB, et al. (2015) Predictors of Thromboembolic Events in Patients with Ventricular Assist Device. ASAIO J 61: 640–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cave AC, Manche A, Derias NW, Hearse DJ (1993) Thromboxane A2 mediates pulmonary hypertension after cardiopulmonary bypass in the rabbit. J Thorac Cardiovasc Surg 106: 959–967

    CAS  PubMed  Google Scholar 

  • Cohn WE, Demirozu ZT, Frazier OH (2011) Surgical closure of left ventricular outflow tract after left ventricular assist device implantation in patients with aortic valve pathology. J Heart Lung Transplant 30: 59–63

    Article  PubMed  Google Scholar 

  • Cohn WE, Frazier OH (2011) The sandwich plug technique: simple, effective, and rapid closure of a mechanical aortic valve prosthesis at left ventricular assist device implantation. J Thorac Cardiovasc Surg 142: 455–457

    Article  PubMed  Google Scholar 

  • Dranishnikov N, Stepanenko A, Potapov E, Dandel M, Sinawski H, et al. (2012) Simultaneous aortic valve replacement in left ventricular assist device recipients: Single-center experience. Int J Artif Organs 35: 489–494. doi: 10.5301/ijao.5000102

    Article  PubMed  Google Scholar 

  • Fitzpatrick JR, 3rd, Frederick JR, Hsu VM, Kozin ED, O’Hara ML, et al. (2008) Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 27: 1286–1292

    Article  PubMed  PubMed Central  Google Scholar 

  • Fratacci MD, Frostell CG, Chen TY, Wain JC, Jr., Robinson DR, Zapol WM (1991). Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiol 75: 990–999

    Article  CAS  Google Scholar 

  • Fukamachi K, McCarthy PM, Smedira NG, Vargo RL, Starling RC, Young JB (1999) Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg 68: 2181–2184

    Article  CAS  PubMed  Google Scholar 

  • Ghofrani HA, Wiedemann R, Rose F, Olschewski H, Schermuly RT, et al. (2002) Combination therapy with oral sildenaphil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med 136: 515–522

    Article  CAS  PubMed  Google Scholar 

  • Griffith KE, Jenkins E, Stulak J, Paugh T, Pagani FD (2012) Long-term use of the CentriMag Ventricular Assist System as a right ventricular assist device: a case report. Perfusion 27: 65–70

    Article  CAS  PubMed  Google Scholar 

  • Hetzer R, Krabatsch T, Stepanenko A, Hennig E, Potapov EV (2010) Long-term biventricular support with the heartware implantable continuous flow pump. J Heart Lung Transplant 29: 822–824

    Article  PubMed  Google Scholar 

  • Hsu PL, Parker J, Egger C, Autschbach R, Schmitz-Rode T, Steinseifer U (2012) Mechanical Circulatory Support for Right Heart Failure: Current Technology and Future Outlook. Artif Organs 36(4): 332–347 Epub 2011 Dec 8

    Article  PubMed  Google Scholar 

  • Kirklin JK, Naftel DC, Stevenson LW, Kormos RL, Pagani FD, et al. (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 27: 1065–1072

    Article  PubMed  Google Scholar 

  • Koene RJ, Win S, Naksuk N, Adatya SN, Rosenbaum AN, et al. (2014). HAS-BLED and CHA2DS2-VASc scores as predictors of bleeding and thrombotic risk after continuous-flow ventricular assist device implantation. J Card Fail 20: 800–807

    Article  PubMed  Google Scholar 

  • Kormos RL, Gasior TA, Kawai A, Pham SM, Murali S, et al. (1996) Transplant candidate's clinical status rather than right ventricular function defines need for univentricular versus biventricular support. J Thorac Cardiovasc Surg 111: 773–782; discussion 782–783

    Article  CAS  PubMed  Google Scholar 

  • Krabatsch T, Potapov E, Stepanenko A, Schweiger M, Kukucka M, et al. (2011a) Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 124 (11 Suppl): S179–186

    Article  PubMed  Google Scholar 

  • Krabatsch T, Schweiger M, Stepanenko A, Drews T, Potapov E, et al. (2011b) Improvements in implantable mechanical circulatory support systems: literature overview and update Herz 36: 622–629

    Google Scholar 

  • Krishan K, Nair A, Pinney S, Adams DH, Anyanwu AC (2012) Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation. Eur J Cardiothorac Surg 41: 213–217

    Article  PubMed  Google Scholar 

  • Kukucka M, Potapov E, Stepanenko A, Weller K, Mladenow A, et al. (2011a) Acute impact of left ventricular unloading by left ventricular assist device on the right ventricle geometry and function: Effect of nitric oxide inhalation. J Thorac Cardiovasc Surg 141: 1009–1014

    Article  PubMed  Google Scholar 

  • Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M, et al. (2011b) Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant 30: 64–69

    Article  PubMed  Google Scholar 

  • Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF (2002) Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med 30: 2548–2552

    Article  CAS  PubMed  Google Scholar 

  • Lepore JJ, Maroo A, Bigatello LM, Dec GW, Zapol WM, et al. (2005) Hemodynamic effects of sildenaphil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 127: 1647–1653

    Article  CAS  PubMed  Google Scholar 

  • Loforte A, Montalto A, Lilla Della Monica P, Musumeci F (2011) Simultaneous temporary CentriMag right ventricular assist device placement in HeartMate II left ventricular assist system recipients at high risk of right ventricular failure. Interact Cardiovasc Thorac Surg 10: 847–850

    Article  Google Scholar 

  • Loforte A, Stepanenko A, Potapov E, Dranischnikov N, Schweiger M, et al. (2014) Temporary versus permanent biventricular support in end-stage refractory biventricular failure. Ann Cardiothorac Surg 3: 585–588

    Google Scholar 

  • Maltais S, Topilsky Y, Tchantchaleishvili V, McKellar SH, Durham LA, et al. (2012) Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices. J Thorac Cardiovasc Surg 143: 1370–1376

    Article  PubMed  Google Scholar 

  • Matthews JC, Koelling TM, Pagani FD, Aaronson KD (2008) The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 51: 2163–2172

    Article  PubMed  PubMed Central  Google Scholar 

  • May-Newman K, Hillen B, Dembitsky W (2006) Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. Asaio J 52: 132–139

    Article  PubMed  Google Scholar 

  • Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, et al. (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116: 238–248

    Article  CAS  PubMed  Google Scholar 

  • Oz MC, Argenziano M, Catanese KA, Gardocki MT, Goldstein DJ, et al. (1997) Bridge experience with long-term implantable left ventricular assist devices. Are they an alternative to transplantation? Circulation 95:1844–1852

    Article  CAS  PubMed  Google Scholar 

  • Pettinari M, Jacobs S, Rega F, Verbelen T, Droogne W, Meyns B (2012) Are right ventricular risk scores useful? Eur J Cardiothorac Surg 42: 621–626

    Article  PubMed  Google Scholar 

  • Piacentino V 3rd, Williams ML, Depp T, Garcia-Huerta K, Blue L, et al. (2011) Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices. Ann Thorac Surg 91:1342–1346; discussion 1346–1347

    Article  PubMed  Google Scholar 

  • Potapov EV, Loforte A, Weng Y, Jurmann M, Pasic M, et al. (2008a) Experience with over 1000 Implanted Ventricular Assist Devices. J Card Surg 23(3): 185–194

    Article  PubMed  Google Scholar 

  • Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A, et al. (2011a) Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant 30: 870–878

    PubMed  Google Scholar 

  • Potapov EV, Schweiger M, Stepanenko A, Dandel M, Kukucka M, et al. (2011b) Tricuspid valve repair in patients supported with left ventricular assist devices. Asaio J 57: 363–7

    Article  PubMed  Google Scholar 

  • Potapov EV, Sodian R, Loebe M, Drews T, Dreysse S, Hetzer R (2001) Revascularization of the occluded right coronary artery during left ventricular assist device implantation. J Heart Lung Transplant 20: 918–922

    Article  CAS  PubMed  Google Scholar 

  • Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, et al. (2008b) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 27: 1275–1281

    Article  PubMed  Google Scholar 

  • Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schofield RS, et al. (2008) Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 27: 1102–1107

    Article  PubMed  Google Scholar 

  • Rioux JP, Lessard M, De Bortoli B, Roy P, Albert M, et al. (2009) Pentastarch 10 % (250 kDa/0.45) is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med 37: 1293–1298

    Article  CAS  PubMed  Google Scholar 

  • Saeed D, Kidambi T, Shalli S, Lapin B, Malaisrie SC, et al. (2011) Tricuspid valve repair with left ventricular assist device implantation: is it warranted? J Heart Lung Transplant 30: 530–535

    Article  PubMed  Google Scholar 

  • Seguchi O, Saito K, Fukuma K, Shimamoto K, Sato T, et al. (2015) Evaluation of micro-emboli in a patient with ventricular assist device support with hemolysis. J Artif Organs 18: 276–279

    Article  PubMed  Google Scholar 

  • Stulak JM, Griffith KE, Nicklas JM, Pagani FD (2011) The use of the HeartWare HVAD for long-term right ventricular support after implantation of the HeartMate II device. J Thorac Cardiovasc Surg 142: e140–142

    Article  PubMed  Google Scholar 

  • Stulak JM, Deo S, Schirger J, Aaronson KD, Park SJ, et al. (2013) Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation. Ann Thorac Surg 96: 2161–2167

    Article  PubMed  Google Scholar 

  • van den Bergh WM, Lansink-Hartgring AO, van Duijn AL, Engström AE, Lahpor JR, et al. (2015). Thromboembolic stroke in patients with a HeartMate-II left ventricular assist device - the role of anticoagulation. J Cardiothorac Surg 10: 128

    Article  PubMed  PubMed Central  Google Scholar 

  • Viitanen A, Salmenpera M, Heinonen J (1990) Right ventricular response to hypercarbia after cardiac surgery. Anesthesiol 73: 393–400

    Article  CAS  Google Scholar 

  • Wan S, LeClerc JL, Vincent JL (1997) Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112: 676–692

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, et al. (2012) Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant 31: 140–149

    Article  PubMed  Google Scholar 

Zu 9.2

  • Amir O, Bracey AW, Smart FW, Delgado RM 3rd, Shah N, Kar B (2005) A successful anticoagulation protocol for the first HeartMate II implantation in the United States. Tex Heart Inst J 32: 399–401

    PubMed  PubMed Central  Google Scholar 

  • Angermayr L, Garrido MV, Busse R (2007) Künstliche Ventrikel bei fortgeschrittener Herzinsuffizinez. Deutsches Institut für Medizinische Dokumentation und Information, Köln

    Google Scholar 

  • Braunwald E, Angiolillo D, Bates E, Berger PB, Bhatt D, et al. (2008) Assessing the current role of platelet function testing. Clin Cardiol 31 (3 Suppl 1): I10-I16

    Article  PubMed  Google Scholar 

  • Caccamo M, Eckman P, John R (2011) Current state of ventricular assist devices. Curr Heart Fail Rep 8: 91–98

    Article  PubMed  Google Scholar 

  • Christiansen S, Jahn UR, Meyer J, Scheld HH, Van Aken H, et al. (2000) Anticoagulative management of patients requiring left ventricular assist device implantation and suffering from heparin-induced thrombocytopenia type II. Ann Thorac Surg 69: 774–777

    Article  CAS  PubMed  Google Scholar 

  • Drews T, Jurmann M, Michael D, Miralem P, Weng Y, Hetzer R (2008) Differences in pulsatile and non-pulsatile mechanical circulatory support in long-term use. J Heart Lung Transplant 27: 1096–1101

    Article  PubMed  Google Scholar 

  • John R, Kamdar F, Liao K, Colvin-Adams M, Miller L, et al. (2008) Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J Thorac Cardiovasc Surg 136: 1318–1323

    Article  PubMed  Google Scholar 

  • Kalya AV, Tector AJ, Crouch JD, Downey FX, McDonald ML, et al. (2005) Comparison of Novacor and HeartMate vented electric left ventricular assist devices in a single institution. J Heart Lung Transplant 24: 1973–1975

    Article  PubMed  Google Scholar 

  • Katz JN, et al. (2015) Safety of reduced anti-thrombotic strategies in HeartMate II patients: A one-year analysis of the US-TRACE Study. J Heart Lung Transplant 34: 1542–1548

    Article  PubMed  Google Scholar 

  • Koliopoulou A, et al. (2016) Bleeding and thrombosis in chronic ventricular assist device therapy: focus on platelets. Curr Opin Cardiol 31: 299–307

    Article  PubMed  Google Scholar 

  • Körfer R, El-Banayosy A (2004) Mechanische Kreislaufunterstützung – 15 Jahre Erfahrung im Herzzentrum Nordrhein-Westfalen. Dtsch Med Wochenschr 129: 800–804

    Article  PubMed  Google Scholar 

  • Liden H, Wierup P, Westerberg M, Nilsson F, Wiklund L (2005) Bridge to heart transplantation with the HeartMate device in Gothenburg, Sweden. Transplant Proc 37: 3321–3322

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Park Y, Oz MC, Naka Y (2003) Device related infections while on left ventricular assist device support do not adversely impact bridging to transplant or posttransplant survival. ASAIO J 49: 748–750

    Article  PubMed  Google Scholar 

  • Morgan JA, John R, Rao V, Weinberg AD, Lee BJ, et al. (2004) Bridging to transplant with the HeartMate left ventricular assist device: The Columbia Presbyterian 12-year experience. J Thorac Cardiovasc Surg 127: 1309–1316

    Article  PubMed  Google Scholar 

  • Panzica MF (2010) Detektion und akustikophysikalische Analyse von mikroembolischen Signalen mittels transkranieller Zweikanal-Dopplersonographie bei terminal herzinsuffizienten Patienten mit pulsatilem linksventrikulären Unerstützungssystem und deren Korrelation zu klinischen und hämostaseologischen Partametern. Inaugural-Dissertaton, Medizinische Fakultät, Westfälische Wilhelms-Universität Münster

    Google Scholar 

  • Pereira NL, Chen D, Kushwaha SS, Park SJ (2010) Discontinuation of antithrombotic therapy for a year or more in patients with continuous-flow left ventricular assist devices. Interact Cardiovasc Thorac Surg 11: 503–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas SV, et al. (2016) Chronic ventricular assist device support: surgical innovation. Curr Opin Cardiol 31: 308–312

    Article  PubMed  Google Scholar 

  • Schmid C, Jurmann M, Birnbaum D, Colombo T, Falk V, et al. (2008) Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis. J Heart Lung Transplant 27: 253–260

    Article  PubMed  Google Scholar 

  • Siebler M, Nachtmann A, Sitzer M, Steinmetz H (1994) Anticoagulation monitoring and cerebral microemboli detection. Lancet 344: 555

    Article  CAS  PubMed  Google Scholar 

  • Slaughter MS, Sobieski MA, Gallagher C, Dia M, Silver MA (2008) Low incidence of neurologic events during long-term support with the HeartMate XVE left ventricular assist device. Tex Heart Inst J 35: 245–249

    PubMed  PubMed Central  Google Scholar 

  • Strueber M, O'Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM; HeartWare Investigators (2011) Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol 57: 1375–1382

    Article  PubMed  Google Scholar 

  • Topkara VK, Dang NC, Martens TP, Cheema FH, Liu JF, Argenziano M, Naka Y (2005) Bridging to transplantation with left ventricular assist devices: outcomes in patients aged 60 years and older. J Thorac Cardiovasc Surg 130: 881–882

    Article  PubMed  Google Scholar 

  • Vitali E, Lanfranconi M, Bruschi G, Ribera E, Garatti A, et al. (2004) Mechanical circulatory support in severe heart failure: single-center experience. Transplant Proc 36: 620–622

    Article  CAS  PubMed  Google Scholar 

  • Weitkemper HH, El-Banayosy A, Arusoglu L, Sarnowski P, Körfer R (2004) Mechanical circulatory support: reality and dreams experience of a single center. J Extra Corpor Technol 36: 169–173

    CAS  PubMed  Google Scholar 

  • Wieselthaler GM, O Driscoll G, Jansz P, Khaghani A, Strueber M; HVAD Clinical Investigators (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant 29: 1218–1225

    Article  PubMed  Google Scholar 

Zu 9.3

  • Bartoli CR, Ghotra AS, Pachika AR, Birks EJ, McCants KC (2014) Hematologic markers better predict left ventricular assist device thrombosis than echocardiographic or pump parameters. Thorac Cardiovasc Surg 62: 414–418

    Article  PubMed  Google Scholar 

  • Birschmann I, Dittrich M, Eller T, Wiegmann B, Reininger AJ, Budde U, Struber M (2014) Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices. J Heart Lung Transplant 33: 80–87

    Article  PubMed  Google Scholar 

  • Blitz A (2014) Pump thrombosis-A riddle wrapped in a mystery inside an enigma. Ann Cardiothorac Surg 3: 450–471

    PubMed  PubMed Central  Google Scholar 

  • Cowger JA, Romano MA, Shah P, Shah N, Mehta V, Haft JW, Aaronson KD, Pagani (2014) Hemolysis: a harbinger of adverse outcome after left ventricular assist device implant. J Heart Lung Transplant 33: 35–43

    Article  PubMed  Google Scholar 

  • Fine NM, Topilsky Y, Oh JK, Hasin T, Kushwaha SS, Daly RC, Joyce LD, Stulak JM, Pereira NL, Boilson BA, et al. (2013) Role of echocardiography in patients with intravascular hemolysis due to suspected continuous-flow LVAD thrombosis. JACC Cardiovasc Imaging 6: 1129–1140

    Article  PubMed  Google Scholar 

  • Goldstein DJ, John R, Salerno C, Silvestry S, Moazami N, Horstmanshof D, Adamson R, Boyle A, Zucker M, Rogers J, et al. (2013) Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant 32: 667–670

    Article  PubMed  Google Scholar 

  • Jorde UP, Aaronson KD, Najjar SS, Pagani FD, Hayward C, Zimpfer D, Schloglhofer T, Pham DT, Goldstein DJ, Leadley K, et al. (2015) Identification and Management of Pump Thrombus in the HeartWare Left Ventricular Assist Device System: A Novel Approach Using Log File Analysis. JACC Heart Fail 3: 849–856

    Article  PubMed  Google Scholar 

  • Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Myers S, Acker MA, Rogers J, Slaughter MS, Stevenson LW (2015) Pump thrombosis in the Thoratec HeartMate II device: An update analysis of the INTERMACS Registry. J Heart Lung Transplant 34: 1515–1526

    Article  PubMed  Google Scholar 

  • Levin AP, Saeed O, Willey JZ, Levin CJ, Fried JA, Patel SR, Sims DB, Nguyen JD, Shin JJ, Topkara VK, et al. (2016) Watchful Waiting in Continuous-Flow Left Ventricular Assist Device Patients With Ongoing Hemolysis Is Associated With an Increased Risk for Cerebrovascular Accident or Death. Circ Heart Fail 9(5)

    Google Scholar 

  • Meyer AL, Kuehn C, Weidemann J, Malehsa D, Bara C, Fischer S, Haverich A, Struber M (2008) Thrombus formation in a HeartMate II left ventricular assist device. J Thorac Cardiovasc Surg 135: 203–204

    Article  PubMed  Google Scholar 

  • Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, Tatooles AJ, Moazami N, Kormos RL, Hathaway DR, et al. (2014) An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant 33: 23–34

    Article  PubMed  Google Scholar 

  • Ota T, Yerebakan H, Akashi H, Takayama H, Uriel N, Colombo PC, Jorde UP, Naka Y (2014) Continuous-flow left ventricular assist device exchange: clinical outcomes. J Heart Lung Transplant 33: 65–70

    Article  PubMed  Google Scholar 

  • Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, Rame JE, Acker MA, Blackstone EH, Ehrlinger J, et al. (2014) Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 370: 33–40

    Article  CAS  PubMed  Google Scholar 

  • Stulak JM, Deo S, Schirger J, Aaronson KD, Park SJ, Joyce LD, Daly RC, Pagani FD (2013) Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation. Ann Thorac Surg 96: 2161–2167

    Article  PubMed  Google Scholar 

  • Stulak JM, Dunlay SM, Sharma S, Haglund NA, Davis MB, Cowger J, Shah P, Masood F, Aaronson KD, Pagani FD, et al. (2015) Treatment of device thrombus in the HeartWare HVAD: Success and outcomes depend significantly on the initial treatment strategy. J Heart Lung Transplant 34: 1535–1541

    Article  PubMed  Google Scholar 

  • Tellor BR, Smith JR, Prasad SM, Joseph SM, Silvestry SC (2014) The use of eptifibatide for suspected pump thrombus or thrombosis in patients with left ventricular assist devices. J Heart Lung Transplant 33: 94–101

    Article  PubMed  Google Scholar 

  • Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M, Latif F, Restaino SW, Mancini DM, Flannery M, Takayama H, et al. (2012) Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol 60: 1764–1775

    Article  PubMed  PubMed Central  Google Scholar 

  • Uriel N, Han J, Morrison KA, Nahumi N, Yuzefpolskaya M, Garan AR, Duong J, Colombo PC, Takayama H, Thomas S, et al. (2014) Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transplant 33: 51–59

    Article  PubMed  Google Scholar 

Zu 9.4

  • Ankersmit HJ, et al. (1999) Activation induced T-cell death and immune dysfunction after implantation of left ventricular assist device. Lancet 354: 550–555

    Article  CAS  PubMed  Google Scholar 

  • Brun-Buisson C, et al. (2003) The costs of septic syndromes in the intensive care unit and influence of hospital acquired sepsis. Intensive Care Med 29: 1464–1471

    Article  PubMed  Google Scholar 

  • Burke JP (2003) Infection control – A problem for patient safety. New Engl J Med 348: 651–656

    Article  PubMed  Google Scholar 

  • Califano S, et al. (2012) Left ventricular assist device related infections. Infect Dis Clin North Am 26: 77–87

    Article  PubMed  Google Scholar 

  • Deng MC, et al. (1999) Left ventricular assist system support is associated with persistent inflammation and temporary immunosuppression. Thorac Cardiovasc Surg 47 (Suppl. 2): 326–331

    Article  PubMed  Google Scholar 

  • Geffers C, et al. (2011)Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (the Hospital Infection Surveillance System). Dtsch Arztebl Int 108: 87–93

    PubMed  PubMed Central  Google Scholar 

  • Gordon SM, et al. (2001) Nosocomial bloodstream infections in patients with implantable left ventricular assist devices. Ann Thorac Surg 72: 725–730

    Article  CAS  PubMed  Google Scholar 

  • Harbath S, et al. (2006) Epidemiologie und Ätiologie schwerer nosokomialer Infektionen. In: Van Aken, et al.: Intensivmedizin, 2. Aufl. Thieme, Stuttgart, New York

    Google Scholar 

  • Inafuku H, et al. (2016) Successful left ventricular assist device re-implantation with omental covering for MDRP device infection. J Artific Org 2016; in press

    Google Scholar 

  • Meyer E, et al. (2014) The reduction of nosocomial MRSA infection in Germany: an analysis of data from the Hospital Infection Surveillance System (KISS) between 2007 and 2012. Dtsch Arztebl Int 111: 331–336

    PubMed  PubMed Central  Google Scholar 

  • Rello J, et al. (2003) Pneumonia in the intensive care unit. Critical Care Med 31: 2544–2551

    Article  Google Scholar 

  • Sandiumenge A, et al. (2003) Therapy of ventilator associated pneumonia. A patient based approach based on the ten rules of the „Tarragona-Strategy”. Intensive Care Med 29: 876–883

    Article  PubMed  Google Scholar 

  • Tjan TDT, et al. (2000) Severe wound complications after left ventricular assist device. Ann Thorac Surg 70: 538–541

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL (2003) Nosocomial infections in adult intensive care units. Lancet 361: 2068–2077

    Article  PubMed  Google Scholar 

Zu 9.5

  • Backes D, van den Bergh WM, van Duijn AL, Lahpor JR, van Dijk D, Slooter AJ (2012) Cerebrovascular complications of left ventricular assist devices. Eur J Cardiothorac Surg 42: 612–620

    Article  PubMed  Google Scholar 

  • Bennett MK, Roberts CA, Dordunoo D, Shah A, Russell SD (2010) Ideal methodology to assess systemic blood pressure in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant 29: 593–594

    Article  PubMed  Google Scholar 

  • Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, Perkins GD (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 81: 1305–1352. doi: 10.1016/j.resuscitation.2010.08.017

    Article  PubMed  Google Scholar 

  • Garg S, Ayers CR, Fitzsimmons C, Meyer D, Peltz M, Bethea B, Cornwell W, Araj F, Thibodeau J, Drazner MH (2014) In-hospital cardiopulmonary arrests in patients with left ventricular assist devices. J Card Fail 20: 899–904

    Article  PubMed  Google Scholar 

  • Guha A, Eshelbrenner CL, Richards DM, Monsour HP Jr (2015) Gastrointestinal bleeding after continuous-flow left ventricular device implantation: review of pathophysiology and management. Methodist Debakey Cardiovasc J 11: 24–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabvuure NT, Rodrigues JN (2014) External cardiac compression during cardiopulmonary resuscitation of patients with left ventricular assist devices. Interact Cardiovasc Thorac Surg 19: 286–289

    Article  PubMed  Google Scholar 

  • Martinez SC, Fansler D, Lau J, Novak EL, Joseph SM, Kleiger RE (2015) Characteristics of the electrocardiogram in patients with continuous-flow left ventricular assist devices. Ann Noninvasive Electrocardiol 20: 62–68

    Article  PubMed  Google Scholar 

  • Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, Perkins GD, Soar J, Truhlář A, Wyllie J, Zideman DA; ERC Guidelines 2015 Writing Group (2015) European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. Resuscitation 95: 1–80

    PubMed  Google Scholar 

  • Myers TJ, Bolmers M, Gregoric ID, Kar B, Frazier OH (2009) Assessment of arterial blood pressure during support with an axial flow left ventricular assist device. J Heart Lung Transplant 28: 423–427

    Article  PubMed  Google Scholar 

  • Patel P, Williams JG, Brice JH (2011) Sustained ventricular fibrillation in an alert patient: preserved hemodynamics with a left ventricular assist device. Prehosp Emerg Care 15: 533–536

    Article  PubMed  Google Scholar 

  • Raasch H, Jensen BC, Chang PP, Mounsey JP, Gehi AK, Chung EH, Sheridan BC, Bowen A, Katz JN (2012) Epidemiology, management, and outcomes of sustained ventricular arrhythmias after continuous-flow left ventricular assist device implantation. Am Heart J 164: 373–378

    Article  PubMed  Google Scholar 

  • Rottenberg EM, Heard J, Hamlin R, et al. (2011) Abdominal only CPR during cardiac arrest for a patient with an LVAD during resternotomy: a case report. J Cardiothorac Surg 6: 91

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinar Z, Bellezzo J, Stahovich M, Cheskes S, Chillcott S, Dembitsky W (2014) Chest compressions may be safe in arresting patients with left ventricular assist devices (LVADs). Resuscitation 85: 702–704

    Article  PubMed  Google Scholar 

  • Stulak JM, Sharma S, Maltais S (2015) Management of pump thrombosis in patients with left ventricular assist devices. Am J Cardiovasc Drug 15: 89–94

    Article  CAS  Google Scholar 

  • Topkara VK, Kondareddy S, Malik F, Wang IW, Mann DL, Ewald GA, Moazami N (2010) Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg 90: 1270–1277

    Article  PubMed  Google Scholar 

  • Xie A, Phan K, Yan TD (2014) Durability of continuous-flow left ventricular assist devices: a systematic review. Ann Cardiothorac Surg 3: 547–556

    PubMed  PubMed Central  Google Scholar 

Zu 9.6

  • Bhat G, Kumar S, Aggarwal A, Pauwaa S, Rossell G, Kurien S, Kumar A, Pappas PS, Tatooles A (2012) Experience with noncardiac surgery in destination therapy left ventricular assist devices patients. ASAIO J 58: 396–401

    Article  PubMed  Google Scholar 

  • Birnie DH, Healey JS, Wells GA, Verma A, Tang AS, Krahn AD, Simpson CS, Ayala-Paredes F, Coutu B, Leiria TL, Essebag V, Investigators BC (2013) Pacemaker or defibrillator surgery without interruption of anticoagulation. New Engl. J Med 368: 2084–2093

    Article  CAS  PubMed  Google Scholar 

  • Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, International Society for H, Lung T (2013) The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: Executive summary. J Heart Lung Transpl 32: 157–187

    Article  Google Scholar 

  • Habib G, Hoen B, Tornos P, Thuny F, Prendergast B, Vilacosta I, Moreillon P, de Jesus Antunes M, Thilen U, Lekakis J, Lengyel M, Muller L, Naber CK, Nihoyannopoulos P, Moritz A, Zamorano JL, Guidelines ESCCfP (2009) Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): The task force on the prevention, diagnosis, and treatment of infective endocarditis of the european society of cardiology (esc). Endorsed by the european society of clinical microbiology and infectious diseases (escmid) and the international society of chemotherapy (isc) for infection and cancer. Eur Heart J 30: 2369–2413

    Article  PubMed  Google Scholar 

  • Hessel EA, 2nd (2014) Management of patients with implanted ventricular assist devices for noncardiac surgery: A clinical review. Semin Cardiothorac Vasc Anesth 18: 57–70

    Article  PubMed  Google Scholar 

  • Morgan JA, Paone G, Nemeh HW, Henry SE, Gerlach B, Williams CT, Lanfear DE, Tita C, Brewer RJ (2012) Non-cardiac surgery in patients on long-term left ventricular assist device support. J Heart Lung Transpl 31: 757–763

    Article  Google Scholar 

  • Siegal D, Yudin J, Kaatz S, Douketis JD, Lim W, Spyropoulos AC (2012) Periprocedural heparin bridging in patients receiving vitamin k antagonists: Systematic review and meta-analysis of bleeding and thromboembolic rates. Circulation 126: 1630–1639

    Article  CAS  PubMed  Google Scholar 

  • Wahl MJ (2000) Myths of dental surgery in patients receiving anticoagulant therapy. J Am Dent Assoc 131: 77–81

    Article  CAS  PubMed  Google Scholar 

Zu 9.7

  • Dunlay SM, Deo, SV, Park, SJ (2015) Impact of tricuspid valve surgery at the time of left ventricular assist device insertion on postoperative outcomes. Asaio J 61: 15–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanke JS, Rojas, SV, Avsar, M, Haverich, A, Schmitto, JD (2015) Minimally-invasive LVAD Implantation: State of the Art. Curr Cardiol Rev 11: 246–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Leprince P, Rahmati, M, Bonnet, N, et al. (2001) Expanded polytetrafluoroethylene membranes to wrap surfaces of circulatory support devices in patients undergoing bridge to heart transplantation. Eur J Cardiothorac Surg 19: 302–306

    Article  CAS  PubMed  Google Scholar 

  • McCandless SP, Ledford, ID, Mason, NO, et al. (2015) Comparing velour versus silicone interfaces at the driveline exit site of HeartMate II devices: infection rates, histopathology, and ultrastructural aspects. Cardiovasc Pathol 24: 71–75

    Article  CAS  PubMed  Google Scholar 

  • Schibilsky D, Benk, C, Haller, C, et al. (2012) Double tunnel technique for the LVAD driveline: improved management regarding driveline infections. J Artif Organs 15: 44–48

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Sindermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 © Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Sindermann, J.R. et al. (2017). Komplikationsmanagement. In: Boeken, U., Assmann, A., Born, F., Klotz, S., Schmid, C. (eds) Mechanische Herz-Kreislauf-Unterstützung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53490-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53490-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53489-2

  • Online ISBN: 978-3-662-53490-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics