Skip to main content

Kunstherzen (Total Artificial Heart)

  • Chapter
  • First Online:
Mechanische Herz-Kreislauf-Unterstützung

Zusammenfassung

Systeme zur biventrikulären Herzunterstützung spielen in Relation zu den Linksherzunterstützungssystemen quantitativ eher eine nachrangige Rolle. Für ausgewählte Patienten stellen sie jedoch oft die einzige mittel- und langfristige Therapieoption dar. Daher werden in diesem Kapitel sowohl kommerziell erhältliche, komplette Kunstherzen als auch zusammengestellte Systeme aus univentrikulären Einzelkomponenten für die intra- und parakorporale Anwendung dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Zu 5.1

  • Abraham WT, Adamson PB, Bourge RC, et al. (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377: 658–666

    Article  PubMed  Google Scholar 

  • Akutsu T, Kolff WJ (1958) Permanent substitutes for valves and hearts. Trans Am Soc Artif Intern Organs 4: 230–235

    Google Scholar 

  • Anderson FL, DeVries WC, Anderson JL, et al. (1984) Evaluation of total artificial heart performance in man. Am J Cardiol 54: 394–398

    Article  CAS  PubMed  Google Scholar 

  • Annas GJ (1986) Made in the USA: legal and ethical issues in artificial heart transplantation. Law Med Health Care 14: 164–171

    CAS  PubMed  Google Scholar 

  • Artificial heart assessment panel (1973) The totally implantable artificial heart: Economic, ethical, legal, medical, psychatric and social implications. National Heart and Lung Institute of DHEW. US Government Printing Office, Washington, DC

    Google Scholar 

  • Bramstedt KA (2003) Contemplating total artificial heart inactivation in case of futility. Death Studies 27: 295–304

    Article  PubMed  Google Scholar 

  • Chiang BY, Olsen DB, Gaykowski R, et al. (1984) Evaluation of treadmill exercise on total artificial heart recipients. Trans Am Soc Artif Intern Organs 30: 514–519

    CAS  PubMed  Google Scholar 

  • Cooley DA, Liotta D, Hallman GL, et al. (1969) Orthotopic cardiac prothesis for two-staged cardiac replacement. Am J Cardiol 24: 723–730

    Article  CAS  PubMed  Google Scholar 

  • Cooley DA, Akutsu T, Norman JC, et al. (1981) Total artificial heart in two-staged cardiac transplantation. Cardiovasc Dis, Bull Tex Heart Inst 8: 305–319

    Google Scholar 

  • Copeland JG, Levinson MM, Smith R, et al. (1986) The total artificial heart as a bridge to transplantation: a report of two cases. JAMA 256: 2991–2995

    Google Scholar 

  • Copeland JG, Arabia FA, Tsau PH, et al. (2003) Total artificial hearts: Bridge to transplantation. Cardiol Clin 21: 101–113

    Article  PubMed  Google Scholar 

  • Copeland JG, Smith RG, Arabia FA, et al. (2004) Cardiac replacement with a total artificial heart as a bridge to transplantation. NEJM 351: 859–867

    Article  CAS  PubMed  Google Scholar 

  • Copeland JG, Smith RG, Bose RJ, et al. (2008) Risk factor analysis for bridge to transplantation with the CardioWest total artificial heart. Ann Thorac Surg 85: 1639–1645

    Article  PubMed  Google Scholar 

  • DeBakey ME (1971) Left ventricular bypass pump for cardiac assistance: clinical experience. Am J Cardiol 3–11

    Google Scholar 

  • DeVries WC (1988) The permanent artificial heart: four case reports. JAMA 259: 849–859

    Article  CAS  PubMed  Google Scholar 

  • De Vries WC, Anderson JH, Joyce LD, et al. (1984) Clinical use of the total artificial heart. N Engl J Med 310: 273–278

    Article  CAS  Google Scholar 

  • Drakos SG, Kfoury AG, Gilbert EM, et al. (2007) Multivariate predictors of heart transplantation outcomes in the era of chronic mechanical circulatory support. Ann Thorac Surg 83: 62–67

    Article  PubMed  Google Scholar 

  • El-Banayosy A, Arusoglu L, Morshuis M, et al. (2005) CardioWest Total Artificial Heart: Bad Oeynhausen experience. Ann Thorac Surg 80: 548–552

    Article  PubMed  Google Scholar 

  • El-Banayosy A, Arusoglu L, Morshuis M, et al. (2007a) Portable Drivers for a total artificial heart. J Heart Lung Transplant 26 (2): S201

    Article  Google Scholar 

  • El-Banayosy A, Morshuis M, Arusoglu L, et al. (2007b) Out of hospital treatment in patients with a total artificial heart. J Heart Lung Transplant 26 (2): S87

    Article  Google Scholar 

  • Everett J, Murray K, Brown V, et al. (1989) The effect of graded exercise on cardiac output of the Jarvik-7–70 total artificial heart in humans. ASAIO Transactions 35: 231–234.

    Article  CAS  PubMed  Google Scholar 

  • Frazier OH, Macris MP 1994 Current methods for circulatory support. Texas Heart Institute Journal 21: 288–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaitan BD, Thunberg CA, Stansbury LG, et al. (2011) Development, Current status, and anesthetic management of the implanted artificial heart. J Cardiothor Vasc Anesth 25: 1179–1192

    Article  Google Scholar 

  • Hansson SO (2005) Implant ethics. J Med Ethics 31: 519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henning E, Grobe-Siestrup C, Krautzberger W, et al. (1978) The relationship of cardiac output and venous pressure in long surviving calves with total artificial heart. Trans Am Soc Artif Intern Organs 24: 616–624

    Google Scholar 

  • Honda T, Nagai I, Nitta S, et al. (1975) Evaluation of cardiac function and venous return curves in awake, unanesthized calves with an implanted total artificial heart. Trans am Soc Artif Intern Organs 21: 362–367

    CAS  PubMed  Google Scholar 

  • Jaroszewski DE, Anderson EM, Pierce CN, et al. (2011) The SynCardia freedom driver: A portable driver for discharge home with the total artificial heart. J Heart Lung Transplant 30: 844–845

    Article  PubMed  Google Scholar 

  • Jauhar S (2004) The artificial heart. NEJM 350: 542–544

    Article  CAS  PubMed  Google Scholar 

  • Johnson KE, Prieto M, Joyce LD, et al. (1992) Summary of the clinical use of the Symbion total artificial heart: a registry report. J Heart Lung Transplant 11: 103–116

    Google Scholar 

  • Joyce LD, DeVries WC, Hastings WL, et al. (1983) Response of the human body to the first permanent implant of the Jarvik-7 total artificial heart. Trans Am Soc Artif Intern Organs 29: 81–87

    CAS  PubMed  Google Scholar 

  • Joyce DL, Southard RE, Torre-Amione G, et al. (2005) Impact of left ventricular assist device (LVAD)-mediated humoral sensitization on post-transplant outcomes. J Heart Lung Transplant 24: 2054–2059

    Article  PubMed  Google Scholar 

  • Jurmann MJ, Weng Y, Drews T, et al. (2004) Permanent mechanical circulatory support in patients of advanced age. Eur J Cardiothorac Surg 25: 610–618

    Article  PubMed  Google Scholar 

  • Kito Y, Honda T, Gibson WH, et al. (1974) Hemodynamic studies during exercise in calves with total artificial heart Trans Am Soc Artif Intern Organs 20: 667–672

    PubMed  Google Scholar 

  • Körfer R (2008) Invited commentary. Ann Thorac Surg 85: 1645

    Article  Google Scholar 

  • Körfer R, El-Banayosy A, Morshuis M, et al. (2007) Total artificial heart-implantation technique using the CardioWest or the Thoratec system. Multiman CardioThorac Surg 3: 1–9; doi: 10.1510/mmcts.s006.002485

    Google Scholar 

  • Kohli HS, Canada J, Arena R, et al. (2011) J Heart Lung Transplant 30: 1207–1213

    Article  PubMed  Google Scholar 

  • Kolff WJ, DeVries WC, Joyce LD, et al. (1983) Lessons learned from DR. Barney Clark in the first patient with an artificial heart. Int J Artif Organs 1: 165–174

    Google Scholar 

  • Leprince P, Bonnet N, Varnous S, et al. (2005) Patients with a body surface area less than 1.7 m2 have a good outcome with the CardioWest Total Artificial Heart. J Heart Lung Transplant 24: 1501–1505

    Article  PubMed  Google Scholar 

  • Lunn JK, Liu WS, Stanley TH, et al. (1976) Effects of treadmill exercise on cardiovascular and respiratory dynamics before and after artificial heart implantation Trans Am Soc Artif Intern Organs 22: 315–322

    CAS  PubMed  Google Scholar 

  • Massad MG, Cook DJ, Schmitt SK, et al. (1997) Factors influencing HLA sensitization in implantable LVAD recipients. Ann Thorac Surg 64: 1120–1125

    Article  CAS  PubMed  Google Scholar 

  • Miles SH, Siegler M, Schiedermayer DL (1988) The Total Artificial Heart: An etchics perspective on current clinical research and deployment. Chest 94: 409–413

    Article  CAS  PubMed  Google Scholar 

  • Moazami N, Itescu S, Williams MR, et al. (1998) Platelet transfusions are associated with the development of anti-major histocompatibility complex class I antibodies in patients with left ventricular assist support. J Heart Lung Transplant 17: 876–880

    CAS  PubMed  Google Scholar 

  • Muneretto C, Solis E, Pavie A (1989) Total artificial heart: Survival and complications. Ann Thorac Surg 47: 151–157

    Article  CAS  PubMed  Google Scholar 

  • Myers TJ, Robertson K, Pool T, et al. (2003) Continuous flow pumps and total artificial hearts. Management issues. Ann Thorac Surg 75: 79–85

    Article  Google Scholar 

  • Nativi JN, Drakos SG, Kucheryavaya AY, et al. (2011) Changing outcomes in patients bridged to heart transplantation with continuous- versus pulsatile-flow ventricular assist devices: An analysis of the registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 30: 854–861

    Article  PubMed  Google Scholar 

  • Nolan PE, Smith RG, Slepian MJ, et al. (2008) Low likelihood for developing cytotoxic antibodies during implantation with the CardioWest Total Artificial Heart. J Heart Lung Transplant 27: S161

    Article  Google Scholar 

  • Norman JC, Cooley DA, Kahan BD, et al. (1978) Total support of the circulation of a patient with postcardiotomy stone-heart syndrom supported by a partial artificial heart (ALVAD) for 5 days followed by heart and kidney transplantation. Lancet 1: 1125–1127

    Article  CAS  PubMed  Google Scholar 

  • O´Connor MJ, Menteer JD, Chrisant MRK, et al. (2010) Ventricular assist device-associated anti-human leukocyte antigen antibody sensitization in pediatric patients bridged to heart transplantation. J Heart Lung Transplant 29: 109–116

    Article  Google Scholar 

  • Pagani FD, Dyke DB, Wright S, et al. (2001) Development of anti-major histocompatibility complex class I and II antibodies following left ventricular assist device implantation: effects on subsequent allograft rejection and survival. J Heart Lung Transplant 20: 646–653

    Article  CAS  PubMed  Google Scholar 

  • Patlolla V, Patten RD, DeNofrio D, et al. (2009) The effect of ventricular assist devices on post-transplant mortality. J Am Coll Cardiol 53: 264–271

    Article  PubMed  Google Scholar 

  • Phillips R, Lichtenthal P, Sloniger J, et al. (2009) Noninvasive cardiac output measurement in heart failure subjects on circulatory support. Anesth Analg 108: 881–886

    Article  PubMed  Google Scholar 

  • Reemtsma K, Krusin R, Edie R, et al. (1978) Cardiac transplantation in patients requiring mechanical circulatory support. N Engl J Med 298: 670–671

    Article  CAS  PubMed  Google Scholar 

  • Schulze B, Tenderich G, Schulz U, et al. (2001) Einfluss verschiedener, mechanischer Unterstützungssysteme auf die Ergebnisse nach orthotoper Herztransplantation Z Herz- Thorax- Gefäßchir 15: 103–110

    Article  Google Scholar 

  • Shah KB, Tang DG, Cooke RH, et al. (2011) Implantable mechanical circulatory support: Demystifying patients with ventricular assist devices and artificial hearts. Clin Cardiol 34: 147–152

    Article  PubMed  Google Scholar 

  • Stehlik J, Edwards LB, Kucheryavaya AY, et al. (2011) The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report-2011. J Heart Lung Transplant 30: 1078–1094

    Google Scholar 

  • Stepanenko A, Potapov EV, Drews T, et al. (2010) Home discharge with CardioWest-t Total artificial Heart – Single center experience. J Heart Lung Transplant 29: S90

    Article  Google Scholar 

  • Spanier TB, Rose S, Schmitt AM, et al. (1996) Interactions between dendritic cells and T-cells on the surface of left ventricular assist devices leads to TH2 pattern of cytokine production and B-cell hyperreactivity in vivo. Circulation 94 (Suppl I): I-293 (abstract)

    Google Scholar 

  • Szefner J, Cabrol C (1993) Control and treatment of hemostasis in patients with a total artificial heart: the experience at La Pitie. In: Piffare R (ed) Anticoagulation, hemostasis and blood preservation in cardiovascular surgery. Hanley and Belfus, Philadelphia, pp 237–264

    Google Scholar 

  • Uchida N, Ishikawa M, Watanabe T, et al. (1987) Hemodynamic adaptation to exercise after total artificial heart (TAH) implantation. Trans Am Soc Artif Intern Organs 33: 240–244

    CAS  Google Scholar 

  • US Food and Drug Administration (ed) New Device Approval-SynCardia temporary CardioWest total artificial heart (TAH-t): P030011. www.accessdata.fda.gov/cdrh_docs/pdf3/P030011a.pdf, Posted: 11–03–2004. (Zugriff 01.03.2012)

  • Van Mawijk K, Van Prooijen HC, Moes M, et al. (1991) Use of leukocyte-depleted platelet concentrations for the prevention of refractoriness and primary HLA alloimmunization: a prospective, randomized trial. Blood 77: 201–205

    Google Scholar 

  • Veatch RM (2003) Inactivating a total artificial heart: special moral problems. Death Studies 27: 305–315

    Article  PubMed  Google Scholar 

  • Verdejo HE, Castro PF, Concepción R, et al. (2007) Comparison of a radiofrequency-based wireless pressure sensor to Swan-Ganz catheter and echocardiography for ambulatory assessment of pulmonary artery pressure in heart failure. JACC 50: 2375–2382

    Article  PubMed  Google Scholar 

  • Yoda M, ElBanayosy A, Tenderich G, et al. (2009) The CardioWest Total Artificial Heart for chronic heart transplant rejection. Circ J 73: 1167–1168

    Article  PubMed  Google Scholar 

  • Zhang B, Masuzawa T, Tatsumi E, et al. (1999) Three-dimesional thoracic modelling for an anatomical compatibility study of the implantable total artificial heart. Artificial Organs 23: 229–234

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Coehlo-Anderson R, Slepian M, et al. (2010) Device malfunction of the CardioWest total artificial heart secondary to catheter entrapment of the tricuspid valve. ASAIO J 56: 481–482

    Article  Google Scholar 

Zu 5.2

  • Carpentier A, Latremouille, C, Cholley, B, et al. (2015) First clinical use of a bioprosthetic total artificial heart: report of two cases. Lancet 386: 1556–1563

    Google Scholar 

  • Latremouille C, Duveau, D, Cholley, B, et al. (2015) Animal studies with the Carmat bioprosthetic total artificial heart. Eur J Cardiothorac Surg 47: e172–178; discussion e178–179

    Article  PubMed  Google Scholar 

  • Menard J (2014) Keys to the success of the CARMAT project? Med Sci (Paris) 30: 204–205

    Article  Google Scholar 

  • Mohacsi P, Leprince, P (2014) The CARMAT total artificial heart. Eur J Cardiothorac Surg 46: 933–934

    Article  PubMed  Google Scholar 

Zu 5.3.1

  • Akutsu T, Mirkovitch V, Topaz SR, Kolff WJ (1963) Silastic sac type of artifical heart and its use in calves. ASAIO Trans 9: 281–285

    CAS  Google Scholar 

  • Bucherl ES (1985) The artificial heart research program in Berlin, Germany. J Heart Transpl 4: 510–517

    CAS  Google Scholar 

  • Fitzpatrick JR3rd, Frederick JR, Hiesinger W, Hsu VM, McCormick RC, et al. (2009) Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg 137: 971–977

    Article  PubMed  PubMed Central  Google Scholar 

  • Hetzer R, Hennig E, Schiessler A, Friedel N, Warnecke H, Adt M (1992) Mechanical circulatory support and heart transplantation. J Heart Lung Transpl 11: S175-S181

    CAS  Google Scholar 

  • Hetzer R, Krabatsch T, Stepanenko A, Hennig E, Potapov EV (2010) Long-term biventricular support with the heartware implantable continuous flow pump. J Heart Lung Transplant 29: 822–824

    Article  PubMed  Google Scholar 

  • Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, et al. (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139: 1316–1324

    Article  PubMed  Google Scholar 

  • Krabatsch T, Potapov E, Stepanenko A, Schweiger M, Kukucka M, et al. (2011) Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 124 (11 Suppl): S179–S186

    Article  PubMed  Google Scholar 

  • Loforte A, Monica PL, Montalto A, Musumeci F (2011) HeartWare third-generation implantable continuous flow pump as biventricular support: mid-term follow-up. Int Cardiovasc Thorac Surg 12: 458–460

    Article  Google Scholar 

  • McGee ECJr, Ahmad U, Tamez D, Brown M, Voskoboynikov N, et al. (2011) Biventricular continuous flow VADs demonstrate diurnal flow variation and lead to end-organ recovery. Ann Thorac Surg 92: e1–3

    Article  PubMed  Google Scholar 

  • Schmid C, Tjan T, Etz C, Welp H, Rukosujew A, et al. (2006) The excor device - revival of an old system with excellent results. Thoracic Cardiovasc Surg 54: 393–399

    Article  CAS  Google Scholar 

  • Strueber M, Meyer AL, Malehsa D, Haverich A (2010) Successful use of the HeartWare HVAD rotary blood pump for biventricular support. J Thorac Cardiovasc Surg 140: 936–937

    Article  PubMed  Google Scholar 

  • Watson JT (1994) Report of the Workshop on the Artificial Heart: Planning for Evolving Technologies, Bethesda, Maryland

    Google Scholar 

Zu 5.3.2

  • Copeland JG (2000) Bridge to transplantation: selection and timing. Transplant Proceed 32: 1535–1536

    Article  CAS  Google Scholar 

  • Körfer R, El-Banayosy A, Morshuis M, et al. (2007) Total artificial heart-implantation technique using the CardioWest or the Thoratec system. Multiman CardioThorac Surg 3:1–9; doi:10.1510/mmcts.s006.002485

    Google Scholar 

  • Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, et al. (2001) Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group 2001. Long-term mechanical left ventricular assistance for end-stage heart failure. New EngJ Med 345: 1435–1443

    Article  CAS  Google Scholar 

  • Samuels L (2004) Biventricular mechanical replacement. Surg Clin North Am 84: 309–321

    Article  PubMed  Google Scholar 

  • Sezai A, Arusoglu L, Minami K, El-Banayosy A, Korfer R (2002) Implantation of biventricular assist devices for chronic heart transplant rejection. Ann Thorac Surg 74: 609–611

    Article  PubMed  Google Scholar 

  • Tjan TDT, Klotz S, Schmid C, Scheld HH (2008) Creation of a self-made total artificial heart using combined components of available ventricular assist devices. Thorac Cardiovasc Surg 56: 51–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Morshuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 © Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Morshuis, M. et al. (2017). Kunstherzen (Total Artificial Heart). In: Boeken, U., Assmann, A., Born, F., Klotz, S., Schmid, C. (eds) Mechanische Herz-Kreislauf-Unterstützung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53490-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53490-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53489-2

  • Online ISBN: 978-3-662-53490-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics