Skip to main content

Chlorophyllfluoreszenzanalyse

  • Chapter
  • First Online:

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

Chlorophyllfluoreszenzanalysen (CFA) sind schnell, einfach und nichtzerstörend bzw. berührungsfrei einsetzbar. Sie liefern umfassende und komplexe Informationen über die potenzielle oder die momentane Leistungsfähigkeit der Photosynthese, die Intaktheit des gesamten Photosyntheseapparates, die relative Aktivität verschiedener physiologischer Schutzmechanismen, das Ausmaß des photosynthetischen Elektronentransports und noch einiges mehr (von Willert et al. 1995). Das macht diese Methode zu einem vielseitigen Indikator der physiologischen Aktivität von chlorophyllhaltigen Pflanzen und Pflanzenteilen.

Bis Mitte der 1980er-Jahre war die Messung der Chlorophyllfluoreszenz aufgrund der vielen damit verbundenen Probleme praktisch nur im Labor durchführbar. Erst die Einführung der Puls-Amplituden-Modulationsmethode vor etwa 30 Jahren erweiterte das Einsatzspektrum der Chlorophyllfluoreszenzmessung auf ökologische Fragestellungen und die Verwendung im Freiland. Die seit wenigen Jahren verfügbaren Bildanalysesysteme (CFI = chlorophyll fluorescence imaging) erhöhten die Einsatzbreite und die Genauigkeit der Chlorophyllfluoreszenzanalyse weiterhin in hohem Maße.

Auch bei der Chlorophyllfluoreszenzanalyse ist es wichtig, das Messsystem zu verstehen, die Pflanzeneigenschaften bzw. die Messbedingungen zu beachten, und bei einer klar definierten Fragestellung die geeigneten Messparameter bzw. das richtige Messprotokoll zu wählen. Mit wenigen schnellen Messungen lassen sich auch hier keine sorgfältigen Untersuchungen ersetzen (Matschke et al. 1996). Bevor auf die Technik selbst und die sich damit bietenden Möglichkeiten sowie deren konkrete Nutzung eingegangen wird, sollen deshalb die physikalischen und physiologischen Grundlagen der Chlorophyllfluoreszenzanalyse dargestellt werden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Albertsson PA (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–354

    Article  CAS  Google Scholar 

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    Article  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  Google Scholar 

  • Baker NR (1991) A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant 81:563–570

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence, and photosynthesis in leaves of Hedera canariensis Willd. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514

    Article  Google Scholar 

  • Brestic M, Zivcak M (2013) PSII fluorescence techniques for measurements of drought and high temperature stress signals in crop plants: protocols and applications. In: Rout GR, Dass AB (Hrsg) Molecular stress physiology of plants. Springer, New Delhi, S 87–131

    Chapter  Google Scholar 

  • Buschmann C (1999) Photochemical and non-photochemical quenching coefficients of the chlorophyll fluorescence: comparison of variation and limits. Photosynthetica 37:217–224

    Article  CAS  Google Scholar 

  • Buschmann C, Langsdorf G, Lichtenthaler HK (2008) The blue, green, red and far-red fluorescence signatures of plant tissues, their multicolor fluorescence imaging and application for agrofood assessment. In: Zude M (Hrsg) Optical methods for monitoring fresh and processed food – basics and applications for a better understanding of non-destructive sensing. CRC-Press, Boca Raton, S 272–319

    Google Scholar 

  • Caffarri S, Tibiletti T, Jennings RC, Santabarbara S (2014) A comparison between photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 15:296–331

    Article  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolekular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  Google Scholar 

  • Demmig B, Björkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171–184

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Goodwin TW, Mercer EI (1982) Introduction to plant biochemistry. Pergamon Press, Oxford

    Google Scholar 

  • Harley PC, Loreto F, Marco GD, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  CAS  Google Scholar 

  • Herppich WB (1989) CAM-Ausprägung in Plectranthus marrubioides Benth. (Fam. Lamiaceae). Einfluss der Faktoren Licht, Blatttemperatur, Luftfeuchtigkeit, Bodenwasserverfügbarkeit und Blattwasserzustand. Westfälische Wilhelms-Universität, Münster

    Google Scholar 

  • Herppich WB (2002) Application potential of chlorophyll fluorescence imaging analysis in horticultural research. In: Zude M, Herold B, Geyer M (Hrsg) Fruit, nut and vegetable production engineering. Institut für Agrartechnik Bornim e.V., Potsdam, S 609–614

    Google Scholar 

  • Herppich WB, Flach BMT, von Willert DJ, Herppich M (1997) Field investigations in Welwitschia mirabilis during a severe drought. II. Influence of leaf age, leaf temperature and irradiance on photosynthesis and photoinhibition. Flora 192:165–174

    Article  Google Scholar 

  • Herppich WB, Herppich M, Tüffers A, von Willert DJ, Midgley GF, Veste M (1998) Photosynthetic responses to CO2 concentration and photon fluence rates in the CAM-cycling plant Delosperma tradescantioides (Mesembryanthemaceae). New Phytol 138:433–440

    Article  Google Scholar 

  • Herppich WB, Foerster J, Zeymer J, Geyer M, Schlüter O (2012) Chlorophyll fluorescence imaging for non-destructively monitoring of changes in fresh and fresh-cut produce. In: Nunes C (Hrsg) Environmentally friendly and safe technologies for quality of fruits and vegetables. Universidade do Algave, Faro, S 45–51

    Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlenstoffassimilation. Naturwissenschaften 19:964

    Article  CAS  Google Scholar 

  • Kooten O van, Snel JEH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basis. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krause GH, Somersalo S, Zumbusch E, Weyer B, Laasch H (1990) On the mechanism of photoinhibition in chloroplasts. Relationship between changes in fluorescence and activity of photosystem II. J Plant Physiol 136:472–479

    Article  CAS  Google Scholar 

  • Lavorell J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J (Hrsg) Primary processes of photosynthesis. Elsevier, Amsterdam, S 203–268

    Google Scholar 

  • Lichtenthaler HK (Hrsg) (1988) In vivo chlorophyll fluorescence as a tool for stress detection in plant. In: Application of chlorophyll fluorescence. Kluwer, Dordrecht, S 129–142

    Google Scholar 

  • Matschke J, Amenda R, Herppich WB (1996) Fluoreszenzmessungen an Zierpflanzen. Gärtnerbörse 23:1099–1102

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Minagawa J (2013) Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. Front Plant Sci 513:1–11

    Google Scholar 

  • Mohr H, Schopfer P (1992) Pflanzenphysiologie. Springer, Berlin

    Book  Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic, San Diego

    Google Scholar 

  • Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65:1955–1972

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Tenhunen GD (Hrsg) Plant response to stress. Springer, Berlin, S 27–53

    Chapter  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis P (Hrsg) Photosynthesis: from light to biosphere. Kluwer, Dordrecht, S 977–980

    Google Scholar 

  • Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19:10–17

    Article  CAS  Google Scholar 

  • Walker D (1990) The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis. Oxygraphics Ltd, Sheffield, S 1–145

    Google Scholar 

  • Willert DJ von, Matyssek R, Herppich WB (1995) Experimentelle Pflanzenökologie. Grundlagen und Anwendungen. Thieme, Stuttgart/New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matyssek, R., Herppich, W.B. (2019). Chlorophyllfluoreszenzanalyse. In: Experimentelle Pflanzenökologie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53465-6_13

Download citation

Publish with us

Policies and ethics