Skip to main content

Sublinear-Space Distance Labeling Using Hubs

  • Conference paper
  • First Online:
Distributed Computing (DISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9888))

Included in the following conference series:

Abstract

A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. We propose a series of new labeling schemes within the framework of so-called hub labeling (HL, also known as landmark labeling or 2-hop-cover labeling), in which each node u stores its distance to all nodes from an appropriately chosen set of hubs \(S(u) \subseteq V\). For a queried pair of nodes (uv), the length of a shortest \(u\!-\!v\)-path passing through a hub node from \(S(u)\cap S(v)\) is then used as an upper bound on the distance between u and v.

We present a hub labeling which allows us to decode exact distances in sparse graphs using labels of size sublinear in the number of nodes. For graphs with at most n nodes and average degree \(\varDelta \), the tradeoff between label bit size L and query decoding time T for our approach is given by \(L = \mathcal {O}(n \log \log _\varDelta T / \log _\varDelta T)\), for any \(T \le n\). Our simple approach is thus the first sublinear-space distance labeling for sparse graphs that simultaneously admits small decoding time (for constant \(\varDelta \), we can achieve any \(T=\omega (1)\) while maintaining \(L=o(n)\)), and it also provides an improvement in terms of label size with respect to previous slower approaches.

By using similar techniques, we then present a 2-additive labeling scheme for general graphs, i.e., one in which the decoder provides a 2-additive-approximation of the distance between any pair of nodes. We achieve almost the same label size-time tradeoff \(L = \mathcal {O}(n \log ^2 \log T / \log T)\), for any \(T \le n\). To our knowledge, this is the first additive scheme with constant absolute error to use labels of sublinear size. The corresponding decoding time is then small (any \(T=\omega (1)\) is sufficient).

We believe all of our techniques are of independent value and provide a desirable simplification of previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of sanity of the notation, we define \(\log x = \max (1, \log _2(x))\).

References

  1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, pp. 782–793 (2010). http://dx.doi.org/10.1137/1.9781611973075.64

  3. Abraham, I., Gavoille, C.: On approximate distance labels and routing schemes with affine stretch. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 404–415. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Agarwal, R., Godfrey, P.B.: Distance oracles for stretch less than 2. In: Khanna, S., (ed.) Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), New Orleans, Louisiana, USA, 6–8 January 2013, pp. 526–538. SIAM (2013)

    Google Scholar 

  5. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  6. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T., Porat, E.: Sublinear distance labeling for sparse graphs. CoRR, abs/1507.02618 (2015)

    Google Scholar 

  7. Alstrup, S., Gavoille, C., Halvorsen, E.B., Petersen, H.: Simpler, faster and shorter labels for distances in graphs. In: Krauthgamer, R., (ed) Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), Arlington, VA, USA, 10–12 January 2016, pp. 338–350. SIAM (2016)

    Google Scholar 

  8. Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V.: Algorithms for hub label optimization. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 69–80. Springer, Heidelberg (2013)

    Google Scholar 

  9. Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. J. Exp. Algorithmics 14, 4: 2.4-4–4: 2.29 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive spanners. SIAM J. Discrete Math. 19(4), 1029–1055 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chechik, S.: Approximate distance oracles with constant query time. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pp. 654–663, New York, NY, USA. ACM (2014)

    Google Scholar 

  12. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Additive spanners and distance and routing labeling schemes for hyperbolic graphs. Algorithmica 62(3–4), 713–732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, H., Porat, E.: On the hardness of distance oracle for sparse graph. CoRR, abs/1006.1117 (2010)

    Google Scholar 

  15. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, R., Pollak, H.: On embedding graphs in squashed cubes. In: Alavi, Y., Lick, D., White, A. (eds.) Graph Theory and Applications. Lecture Notes in Mathematics, vol. 303, pp. 99–110. Springer, Berlin Heidelberg (1972)

    Chapter  Google Scholar 

  18. Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path computations with arc-flags. In: 9th DIMACS Implementation Challenge (2006)

    Google Scholar 

  19. Nitto, I., Venturini, R.: On compact representations of all-pairs-shortest-path-distance matrices. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 166–177. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Pătraşcu, M.: Succincter. In: 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 25–28 October 2008, Philadelphia, PA, USA, pp. 305–313. IEEE Computer Society (2008)

    Google Scholar 

  21. Pătraşcu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. SIAM J. Comput. 43(1), 300–311 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roditty, L.: Distance oracles for sparse graphs. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 1–3. Springer, New York (2014)

    Google Scholar 

  23. Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: 50th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 703–712. IEEE (2009)

    Google Scholar 

  24. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 2001), pp. 1–10, New York, NY, USA. ACM (2001)

    Google Scholar 

  25. Weimann, O., Peleg, D.: A note on exact distance labeling. Inf. Process. Lett. 111(14), 671–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wulff-Nilsen, C.: Approximate distance oracles with improved query time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 539–549 (2013)

    Google Scholar 

Download references

Acknowledgments

Most of the work was done while PU was affiliated to Aalto University, Finland. Research partially supported by the National Science Centre, Poland - grant number 2015/17/B/ST6/01897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Uznański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gawrychowski, P., Kosowski, A., Uznański, P. (2016). Sublinear-Space Distance Labeling Using Hubs. In: Gavoille, C., Ilcinkas, D. (eds) Distributed Computing. DISC 2016. Lecture Notes in Computer Science(), vol 9888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53426-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53426-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53425-0

  • Online ISBN: 978-3-662-53426-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics