Skip to main content

Training im Sport als Prozess – Trainingssteuerung

Modelle, Theorien, Methoden und Anpassungen

  • 8517 Accesses

Zusammenfassung

Die Trainingswissenschaft greift auf mehr oder weniger elaborierte Heuristiken, Theorien, Konzepte und Modelle zur Beschreibung, Erklärung und Ergründung von Anpassungs-, Regelungs- und Steuerungsprozessen zurück. Die Erklärungskraft der jeweiligen Theorien und Modelle zu Anpassungsprozessen durch Training sowie zur Trainingssteuerung reichen dabei von einer veranschaulichenden (didaktischen) Betrachtung bis hin zu empirisch prüfbaren Modellvorstellungen mit strukturerklärendem Inhalt. Integrative Theorien und Modelle zum Training stehen jedoch vor der schwierigen bis nicht lösbaren Aufgabe, dass sie einerseits heterogene, morphologische, funktionelle Adaptationen auf unterschiedlichen Funktionsebenen erklären und andererseits Leistungsentwicklungen im koordinativen, technisch-taktischen Bereich aufgrund von informationsprozess-gestützten, handlungsregulativen Anpassungen abbilden sollen.

Dieser Beitrag ist Teil der Sektion Sportmotorische Fähigkeiten und sportliches Training, herausgegeben vom Teilherausgeber Michael Fröhlich, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

Schlüsselwörter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Diese Bezeichnung ist grundsätzlich etwas irreführend, da das primäre Ziel der Periodisierung die Aufhebung der Linearität über die Variation ist (DeWeese et al. 2015).

Literatur

  • Aubry, A., Hausswirth, C., Louis, J., Coutts, A. J., Buchheit, M., & Le Meur, Y. (2015). The development of functional overreaching is associated with a faster heart rate recovery in endurance athletes. PLoS One, 10(10), 1–16.

    Google Scholar 

  • Banister, E. W., & Fitz-Clarke, J. R. (1993). Plasticity of response to equal quantities of endurance training separated by non-training in humans. Journal of Thermal Biology, 18(5–6), 587–597.

    Google Scholar 

  • Banister, E. W., & Hamilton, C. L. (1985). Variations in iron status with fatigue modelled from training in female distance runners. European Journal of Applied Physiology and Occupational Physiology, 54(1), 16–23.

    CAS  PubMed  Google Scholar 

  • Banister, E. W., Calvert, I. W., Savage, M. V., & Bach, I. M. (1975). A system model of training for athletic performance. Australian Journal of Sports Medicine, 7(3), 57–61.

    Google Scholar 

  • Banister, E. W., Morton, R. H., & Fitz-Clarke, J. (1992). Dose/response effects of exercise modeled from training: physical and biochemical measures. The Annals of Physiological Anthropology, 11(3), 345–356.

    CAS  PubMed  Google Scholar 

  • Barjaste, A., & Mirzaei, B. (2017). The periodization of resistance training in soccer players: Changes in maximal strength, lower extremity power, body composition, and muscle volume. The Journal of Sports Medicine and Physical Fitness, 58(9), 1218–1225.

    Google Scholar 

  • Bellenger, C. R., Thomson, R. L., Robertson, E. Y., Davison, K., Nelson, M. J., Karavirta, L., et al. (2017). The effect of functional overreaching on parameters of autonomic heart rate regulation. European Journal of Applied Physiology, 117(3), 541–550.

    PubMed  Google Scholar 

  • Bompa, T. O., & Haff, G. G. (2009). Periodization. Theorie and methodology of training. Champaign: Human Kinetics.

    Google Scholar 

  • Bonafiglia, J. T., Rotundo, M. P., Whittall, J. P., Scribbans, T. D., Graham, R. B., & Gurd, B. J. (2016). Inter-individual variability in the adaptive responses to endurance and sprint interval training: A randomized crossover study. PLOS ONE, 11(12), e0167790.

    PubMed  PubMed Central  Google Scholar 

  • Bouchard, C., & Rankinen, T. (2001). Individual differences in response to regular physical activity. Medicine & Science in Sports & Exercise, 33(6 Suppl), 446–451.

    Google Scholar 

  • Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., et al. (2017). Monitoring athlete training loads: Consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2161–S2170.

    PubMed  Google Scholar 

  • Burd, N. A., West, D. W., Moore, D. R., Atherton, P. J., Staples, A. W., Prior, T., et al. (2011). Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. The Journal of Nutrition, 141(4), 568–573.

    CAS  PubMed  Google Scholar 

  • Busso, T. (2003). Variable dose-response relationship between exercise training and performance. Medicine & Science in Sports & Exercise, 35(7), 1188–1195.

    Google Scholar 

  • Busso, T., Hakkinen, K., Pakarinen, A., Kauhanen, H., Komi, P. V., & Lacour, J. R. (1992). Hormonal adaptations and modelled responses in elite weightlifters during 6 weeks of training. European Journal of Applied Physiology and Occupational Physiology, 64(4), 381–386.

    CAS  PubMed  Google Scholar 

  • Cannon, W. B. (1932). The wisdom of the body. New York: W W Norton & Co.

    Google Scholar 

  • Carl, K. (1983). Training und Trainingslehre in Deutschland. Schorndorf: Hofmann.

    Google Scholar 

  • Chalencon, S., Pichot, V., Roche, F., Lacour, J. R., Garet, M., Connes, P., et al. (2015). Modeling of performance and ANS activity for predicting future responses to training. European Journal of Applied Physiology and Occupational Physiology, 115(3), 589–596.

    PubMed  Google Scholar 

  • Claudino, J. G., Cronin, J. B., Mezencio, B., Pinho, J. P., Pereira, C., Mochizuki, L., et al. (2016). Autoregulating jump performance to induce functional overreaching. Journal of Strength and Conditioning Research, 30(8), 2242–2249.

    PubMed  Google Scholar 

  • DeWeese, G., Hornsby, G., Stone, M., & Stone, M. H. (2015). The training process: Planning for strength–power training in track and field. Part 1: Theoretical aspects. Journal of Sport and Health Science, 4(4), 308–317.

    Google Scholar 

  • Düking, P., Holmberg, H.-C., & Sperlich, B. (2017). Instant biofeedback provided by wearable sensor technology can help to optimize exercise and prevent injury and overuse. Frontiers in Physiology, 8, 167.

    PubMed  PubMed Central  Google Scholar 

  • Eifler, C. (2016). Short-term effects of different loading schemes in fitness-related resistance training. Journal of Strength and Conditioning Research, 30(7), 1880–1889.

    PubMed  Google Scholar 

  • Fitz-Clarke, J. R., Morton, R. H., & Banister, E. W. (1991). Optimizing athletic performance by influence curves. Journal of Applied Physiology, 71(3), 1151–1158.

    CAS  PubMed  Google Scholar 

  • Fleck, S. J., & Kramer, W. J. (1996). Periodization breakthrough! Ronkonkoma: Advanced Research Press.

    Google Scholar 

  • Friedrich, W., & Moeller, H. (1999). Zum Problem der Superkompensation. Leistungssport, 29(5), 52–55.

    Google Scholar 

  • Fröhlich, M. (2009). Überlegungen zum Trainingsbegriff und zur Theorie des Trainings aus ökonomischer Perspektive. Leipziger Sportwissenschaftliche Beiträge, 50(2), 8–35.

    Google Scholar 

  • Fröhlich, M. (2012). Überlegungen zur Trainingswissenschaft. Sportwissenschaft, 42(2), 96–104.

    Google Scholar 

  • Fröhlich, M., & Ludwig, O. (2019). Trainingswissenschaft. In A. Güllich & M. Krüger (Hrsg.), Bewegung, Training, Leistung und Gesundheit: Handbuch Sport und Sportwissenschaft (S. 1–14). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Fröhlich, M., Emrich, E., & Büch, M.-P. (2007). Grenzerträge auch im Sport! Erste Überlegungen zur ökonomischen Betrachtung trainingswissenschaftlicher Probleme. Ein Beitrag zu einer Ökonomie der Trainingswissenschaft. Sportwissenschaft, 37(3), 296–311.

    Google Scholar 

  • Fröhlich, M., Müller, T., Schmidtbleicher, D., & Emrich, E. (2009). Outcome-Effekte verschiedener Periodisierungsmodelle im Krafttraining. Deutsche Zeitschrift für Sportmedizin, 60(10), 307–314.

    Google Scholar 

  • Fröhlich, M., & Kemmler, W. (2019). Kraft und Krafttraining im Sport: Anwendungsbereiche, Diagnostik, Trainingsformen, Organisation, Methoden, Anpassungen. In A. Güllich & M. Krüger (Hrsg.), Bewegung, Training, Leistung und Gesundheit: Handbuch Sport und Sportwissenschaft (S. 1–20). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Gabbett, T. J. (2016). The training-injury prevention paradox: Should athletes be training smarter and harder? British Journal of Sports Medicine, 50(5), 273–280.

    PubMed  Google Scholar 

  • Gaine, P. C., Viesselman, C. T., Pikosky, M. A., Martin, W. F., Armstrong, L. E., Pescatello, L. S., et al. (2005). Aerobic exercise training decreases leucine oxidation at rest in healthy adults. The Journal of Nutrition, 135(5), 1088–1092.

    CAS  PubMed  Google Scholar 

  • Ganter, N., Witte, K., & Edelmann-Nusser, J. (2006). Performance prediction in cycling using antagonistic models. International Journal of Computer Science in Sport, 5(2), 56–59.

    Google Scholar 

  • Glynn, E. L., Fry, C. S., Drummond, M. J., Dreyer, H. C., Dhanani, S., Volpi, E., et al. (2010). Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 299(2), R533–R540.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, A. M., Hoffman, J. R., Stout, J. R., Fukuda, D. H., & Willoughby, D. S. (2016). Intramuscular anabolic signaling and endocrine response following resistance exercise: Implications for muscle hypertrophy. Sports Medicine, 46(5), 671–685.

    PubMed  Google Scholar 

  • Goodman, C. A. (2014). The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Reviews of Physiology, Biochemistry and Pharmacology, 166, 43–95.

    CAS  PubMed  Google Scholar 

  • Graf, O. (1954). Begriff der Leistungsbereitschaft. Zentralblatt für Arbeitswissenschaften (Bd. 8, S. 141–144).

    Google Scholar 

  • Grgic, J., Mikulic, P., Podnar, H., & Pedisic, Z. (2017). Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: A systematic review and meta-analysis. PeerJ, 5, e3695.

    PubMed  PubMed Central  Google Scholar 

  • Grosser, M., Brüggemann, P., & Zintl, F. (1986). Leistungssteuerung in Training und Wettkampf. München: BLV.

    Google Scholar 

  • Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(Suppl 2), 139–147.

    Google Scholar 

  • Halson, S. L., & Jeukendrup, A. E. (2004). Does overtraining exist? An analysis of overreaching and overtraining research. Sports Medicine, 34(14), 967–981.

    PubMed  Google Scholar 

  • Hautala, A. J., Kiviniemi, A. M., Makikallio, T. H., Kinnunen, H., Nissila, S., Huikuri, H. V., et al. (2006). Individual differences in the responses to endurance and resistance training. European Journal of Applied Physiology, 96(5), 535–542.

    PubMed  Google Scholar 

  • Hecksteden, A., Kraushaar, J., Scharhag-Rosenberger, F., Theisen, D., Senn, S., & Meyer, T. (2015). Individual response to exercise training – a statistical perspective. Journal of Applied Physiology, 118(12), 1450–1459.

    PubMed  Google Scholar 

  • Hellard, P., Avalos, M., Lacoste, L., Barale, F., Chatard, J. C., & Millet, G. P. (2006). Assessing the limitations of the Banister model in monitoring training. Journal of Sports Sciences, 24(5), 509–520.

    PubMed  PubMed Central  Google Scholar 

  • Hohmann, A., & Lames, M. (2002). Der propositionale Gehalt der Trainingsprinzipien und ihr Beitrag zu modernen Konzepten der Trainingssteuerung. In J. Krug & H.-J. Midow (Hrsg.), Trainingsprinzipien – Fundamente der Trainingswissenschaft (S. 29–42). Köln: Sport und Buch Strauß.

    Google Scholar 

  • Hohmann, A., Lames, M., & Letzelter, M. (2014). Einführung in die Trainingswissenschaft. Wiebelsheim: Limpert.

    Google Scholar 

  • Hoover, D. L., Van Wye, W. R., & Judge, L. W. (2016). Periodization and physical therapy: Bridging the gap between training and rehabilitation. Physical Therapy in Sport, 18(March), 1–20.

    Google Scholar 

  • Hottenrott, K., & Neumann, G. (2017). Theorien und Modelle der Adaptation an Training. In K. Hottenrott & I. Seidel (Hrsg.), Handbuch Trainingswissenschaft – Trainingslehre (S. 43–61). Schorndorf: Hofmann.

    Google Scholar 

  • Hottenrott, K., Hoos, O., Stoll, O., & Blazek, I. (2013). Sportmotorische Fähigkeiten und sportliche Leistungen – Trainingswissenschaft. In A. Güllich & M. Krüger (Hrsg.), Sport: Das Lehrbuch für das Sportstudium (S. 439–501). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Issurin, V. B. (2016). Benefits and limitations of block periodized training approaches to athletes’ preparation: A review. Sports Medicine, 46(3), 329–338.

    PubMed  Google Scholar 

  • Jakovlev, N. N. (1977). Sportbiochemie. Leipzig: Barth.

    Google Scholar 

  • Jakowlew, N. N. (1975). Biochemische Adaptationsmechanismen der Skelettmuskeln an erhöhte Aktivität. Medizin und Sport, 15(5), 132–139.

    Google Scholar 

  • Jakowlew, N. N. (1976). Erweiterung der Regulationsbereiche des Stoffwechsels bei Anpassung verstärkter Muskeltätigkeit. Medizin und Sport, 16(3), 66–70.

    Google Scholar 

  • Julian, R., Meyer, T., Fullagar, H. H., Skorski, S., Pfeiffer, M., Kellmann, M., et al. (2017). Individual patterns in blood-borne indicators of fatigue-trait or chance. The Journal of Strength & Conditioning Research, 31(3), 608–619.

    Google Scholar 

  • Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2015). Physiology of sport and exercise. Champaigen: Human Kinetics.

    Google Scholar 

  • Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339–361.

    PubMed  Google Scholar 

  • Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Meur, Y., Buchheit, M., Aubry, A., Coutts, A. J., & Hausswirth, C. (2017). Assessing overreaching with heart-rate recovery: What is the minimal exercise intensity required? International Journal of Sports Physiology and Performance, 12(4), 569–573.

    PubMed  Google Scholar 

  • Letzelter, M. (1978). Trainingsgrundlagen. Rowohlt Taschenbuch: Reinbek bei Hamburg.

    Google Scholar 

  • Mader, A. (1990). Aktive Belastungsadaptation und Regulation der Proteinsynthese auf zellulärer Ebene. Deutsche Zeitschrift für Sportmedizin, 41(2), 40–58.

    CAS  Google Scholar 

  • Mangine, G. T., Hoffman, J. R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., et al. (2017). Exercise-induced hormone elevations are related to muscle growth. Journal of Strength and Conditioning Research, 31(1), 45–53.

    PubMed  Google Scholar 

  • Martin, D., Carl, K., & Lehnertz, K. (1993). Handbuch Trainingslehre. Schorndorf: Hofmann.

    Google Scholar 

  • Matwejew, L. P. (1978). Periodisierung des sportlichen Trainings. Berlin: Barthels & Wernitz.

    Google Scholar 

  • McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise physiology: Nutrition, energy, and human performance. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., et al. (2013). Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). European Journal of Sport Science, 13(1), 1–24.

    Google Scholar 

  • Mitchell, C. J., Churchward-Venne, T. A., Bellamy, L., Parise, G., Baker, S. K., & Phillips, S. M. (2013). Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One, 8(10), e78636.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mujika, I., Busso, T., Lacoste, L., Barale, F., Geyssant, A., & Chatard, J.-C. (1996). Modeled responses to training and taper in competitive swimmers. Medicine & Science in Sports & Exercise, 28(2), 251–258.

    CAS  Google Scholar 

  • Nitzsche, N., Neuendorf, T., Gehlert, S., Fröhlich, M., & Schulz, H. (2017). Cellular activation of selected signaling proteins through resistance training – A training methodological perspective. German Journal of Exercise and Sport Research 48(1), 1–12.

    Google Scholar 

  • Olivier, N. (1996). Techniktraining unter konditioneller Belastung. Schorndorf: Hofmann.

    Google Scholar 

  • Olivier, N. (2001). Eine Beanspruchungstheorie sportlichen Trainings und Wettkampfs. Sportwissenschaft, 31(4), 437–453.

    Google Scholar 

  • Perl, J. (2001). PerPot: A metamodel for simulation of load performance interaction. European Journal of Sport Science, 1(2), 1–13.

    Google Scholar 

  • Perl, J. (2002). Adaptation, antagonism and system dynamics. In G. Ghent, D. Kluka & D. Jones (Hrsg.), Perspectives – The multidisciplinary series of physical education and sport science (Bd. 4, S. 105–125). Oxford: Meyer & Meyer Sport.

    Google Scholar 

  • Perl, J., & Pfeiffer, M. (2011). PerPot DoMo: Antagonistic meta-model processing two concurrent load flows. International Journal of Computer Science in Sport, 10(1), 85–92.

    Google Scholar 

  • Pfeiffer, M. (2008). Modeling the relationship between training and performance – A comparison of two antagonistic concepts [Electronische Version]. International Journal of Computer Science in Sport, 7, 13–32.

    Google Scholar 

  • Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., & Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. The American Journal of Physiology, 273(1 Pt 1), E99–107.

    PubMed  Google Scholar 

  • Poliquin, C. (1988). Five steps to increasing the effectiveness of your strength training program. National Strength and Conditioning Association Journal, 10(3), 34–39.

    Google Scholar 

  • Rennie, M. J., Bohe, J., Smith, K., Wackerhage, H., & Greenhaff, P. (2006). Branched-chain amino acids as fuels and anabolic signals in human muscle. The Journal of Nutrition, 136(1 Suppl), 264S–268S.

    CAS  PubMed  Google Scholar 

  • Rhea, M. R., & Alderman, B. L. (2004). A meta-analysis of periodized versus nonperiodized strength and power training programs. Research Quarterly for Exercise and Sport, 75(4), 413–422.

    PubMed  Google Scholar 

  • Rhea, M. R., Ball, S. D., Phillips, W. T., & Burkett, L. N. (2002). A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. Journal of Strength and Conditioning Research, 16(2), 250–255.

    PubMed  Google Scholar 

  • Rohmert, W. (1984). Das Belastungs-Beanspruchungs-Konzept. Zeitschrift für Arbeitswissenschaft, 38(4), 193–200.

    Google Scholar 

  • Rohmert, W., & Rutenfranz, J. (1983). Praktische Arbeitsphysiologie. Stuttgart/New York: Thieme.

    Google Scholar 

  • Rossetti, M. L., Steiner, J. L., & Gordon, B. S. (2017). Androgen-mediated regulation of skeletal muscle protein balance. Molecular and Cellular Endocrinology, 447, 35–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux, W. (1895). Vorträge und Aufsätze über Entwicklungsmechanik des Organismus. Leipzig: W. Engelmann.

    Google Scholar 

  • Saw, A. E., Main, L. C., & Gastin, P. B. (2016). Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. British Journal of Sports Medicine, 50(5), 281–291.

    PubMed  Google Scholar 

  • Schaub, T. (2014). Bedeutung der mTOR-regulierten Zellschicksalsprogramme für dieosteoblastäre Differenzierung und die regenerative Kapazität von mesenchymalen Stromazellen. Doctoral Thesis. Freie Universität Berlin.

    Google Scholar 

  • Schnabel, G., Harre, H.-D., & Krug, J. (2014). Trainingslehre – Trainingswissenschaft: Leistung, Training, Wettkampf. Aachen: Meyer & Meyer.

    Google Scholar 

  • Schroeder, E. T., Villanueva, M., West, D. D., & Phillips, S. M. (2013). Are acute post-resistance exercise increases in testosterone, growth hormone, and IGF-1 necessary to stimulate skeletal muscle anabolism and hypertrophy? Medicine and Science in Sports and Exercise, 45(11), 2044–2051.

    PubMed  Google Scholar 

  • Schwellnus, M., Soligard, T., Alonso, J. M., Bahr, R., Clarsen, B., Dijkstra, H. P., et al. (2016). How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. British Journal of Sports Medicine, 50(17), 1043–1052.

    PubMed  Google Scholar 

  • Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature, 138, 32.

    Google Scholar 

  • Selye, H. (1946). The general adaptation syndrome and the diseases of adaptation. The Journal of Clinical Endocrinology, 6(2), 117–230.

    CAS  Google Scholar 

  • Soligard, T., Schwellnus, M., Alonso, J. M., Bahr, R., Clarsen, B., Dijkstra, H. P., et al. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. British Journal of Sports Medicine, 50(17), 1030–1041.

    PubMed  Google Scholar 

  • Soliman, G. A. (2015). The expanding role of the mammalian target of rapamycin complex 2 (mTORC2) in cellular metabolism. Archives of Medicine, 7(6), 1–8.

    Google Scholar 

  • Soodak, H., & Iberall, A. (1978). Homeokinetics: A physical science for complex systems. Science, 201(4356), 579–582.

    CAS  PubMed  Google Scholar 

  • Stanley, J., Peake, J. M., & Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Medicine, 43(12), 1259–1277.

    PubMed  Google Scholar 

  • Starischka, S. (1988). Trainingsplanung. Schorndorf: Hofmann.

    Google Scholar 

  • Steele, J., Fisher, J., Giessing, J., & Gentil, P. (2017). Clarity in reporting terminology and definitions of set end points in resistance training. Muscle & Nerve, 56, 368–374.

    Google Scholar 

  • Sylta, O., Tonnessen, E., Hammarstrom, D., Danielsen, J., Skovereng, K., Ravn, T., et al. (2016). The effect of different high-intensity periodization models on endurance adaptations. Medicine and Science in Sports and Exercise, 48(11), 2165–2174.

    PubMed  Google Scholar 

  • Taha, T., & Thomas, S. G. (2003). Systems modelling of the relationship between training and performance. Sports Medicine, 33(14), 1061–1073.

    PubMed  Google Scholar 

  • Tan, B. (1999). Manipulating resistance training program variables to optimize maximum strength in men: A review. Journal of Strength and Conditioning Research, 13(3), 289–304.

    Google Scholar 

  • Toigo, M., & Boutellier, U. (2006). New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. European Journal of Applied Physiology, 97(6), 643–663.

    PubMed  Google Scholar 

  • Trommelen, J., Groen, B. B., Hamer, H. M., de Groot, L. C., & van Loon, L. J. (2015). Mechanisms in Endocrinology: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: A systematic review. European Journal of Endocrinology, 173(1), R25–R34.

    CAS  PubMed  Google Scholar 

  • Tschiene, P. (1977). Einige neue Aspekte zur Periodisierung des des Hochleistungstrainings. Leistungssport, 7(5), 379–382.

    Google Scholar 

  • Tschiene, P. (2006). Streit um die Superkompensation. Leistungssport, 36(1), 5–15.

    Google Scholar 

  • Verchoshanskij, J. (1992). Ein neues Trainingssystem für zyklische Sportarten. Münster: Philippka.

    Google Scholar 

  • Verchoshanskiy, J., & Viru, A. (1990). Einige Gesetzmäßigkeiten der langfristigen Adaptation des Organismus von Sportlern an körperliche Belastungen. Leistungssport, 20(3), 10–13.

    Google Scholar 

  • Viru, A. (1984). The mechanism of training effects: A hypothesis. International Journal of Sports Medicine, 05(05), 219–227.

    CAS  Google Scholar 

  • Viru, A. (1996). Postexercise recovery period: Carbohydrate and protein metabolism. Scandinavian Journal of Medicine and Science in Sports, 6(11), 2–14.

    CAS  PubMed  Google Scholar 

  • Wackerhage, H. (2014). Molecular exercise physiology. An introduction. Oxen: Routledge.

    Google Scholar 

  • Wallace, L. K., Slattery, K. M., & Coutts, A. J. (2014). A comparison of methods for quantifying training load: Relationships between modelled and actual training responses. European Journal of Applied Physiology, 114(1), 11–20.

    CAS  PubMed  Google Scholar 

  • Weineck, J. (2010). Optimales Training. Balingen: Spitta.

    Google Scholar 

  • West, D. W., Kujbida, G. W., Moore, D. R., Atherton, P., Burd, N. A., Padzik, J. P., et al. (2009). Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. Journal of Physiology, 587. (Pt 21, 5239–5247).

    CAS  PubMed  PubMed Central  Google Scholar 

  • West, D. W., Burd, N. A., Churchward-Venne, T. A., Camera, D. M., Mitchell, C. J., Baker, S. K., et al. (2012). Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. Journal of Applied Physiology, 112(11), 1805–1813.

    CAS  PubMed  Google Scholar 

  • Wiener, N. (1968). Kybernetik. Regelung und Nachrichtenübertragung im Lebewesen und in der Maschine (org. 1948). Düsseldorf: Econ.

    Google Scholar 

  • Wiewelhove, T., Raeder, C., Meyer, T., Kellmann, M., Pfeiffer, M., & Ferrauti, A. (2015). Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PLoS One, 10(10), e0139801.

    PubMed  PubMed Central  Google Scholar 

  • Williams, T. D., Tolusso, D. V., Fedewa, M. V., & Esco, M. R. (2017). Comparison of periodized and non-periodized resistance training on maximal strength: A meta-analysis. Sports Medicine, 47(10), 2083–2100.

    Google Scholar 

  • Winkelhake, O., Thieme, L., & Fröhlich, M. (2014). Sportliches Talent. Sportwissenschaft, 44(4), 224–239.

    Google Scholar 

  • Yates, F. E. (2008). Homeokinetics/Homeodynamics: A physical heuristic for life and complexity. Ecological Psychology, 20(2), 148–179.

    Google Scholar 

  • Zaciorskij, V. M. (1972). Kybernetik – Mathematik – Sport. Theorie und Praxis der Körperkultur, 11(4), 325–336.

    Google Scholar 

  • Zourdos, M. C., Jo, E., Khamoui, A. V., Lee, S. R., Park, B. S., Ormsbee, M. J., et al. (2016). Modified daily undulating periodization model produces greater performance than a traditional configuration in powerlifters. Journal of Strength and Conditioning Research, 30(3), 784–791.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fröhlich .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fröhlich, M., Kemmler, W., Pfeiffer, M. (2023). Training im Sport als Prozess – Trainingssteuerung. In: Güllich, A., Krüger, M. (eds) Bewegung, Training, Leistung und Gesundheit. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53410-6_44

Download citation

Publish with us

Policies and ethics