Skip to main content

Running LoLA 2.0 in a Model Checking Competition

  • Chapter
  • First Online:
Transactions on Petri Nets and Other Models of Concurrency XI

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 9930))

Abstract

We report on the performance of the tool LoLA 2.0 in the model checking contest (MCC) 2015. As in the years before, LoLA ranked first in the reachability category of the contest. We identify critical success factors and discuss the impact of the contest design. Conclusions include further improvements for the tool as well as suggestions concerning the setup of future contests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based on the result sheets of the MCC 2015. Not included are 290 queries that LoLA found to be equivalent to a formula without temporal operators. Such formulas could be evaluated by just inspecting the initial marking. Also not included are 603 extremely long formulas where a time limit was reached while parsing the query. Also not included is the compute-bounds subcategory.

References

  1. Billington, J., et al.: The Petri Net Markup Language: concepts, technology, and tools. In: Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  3. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

    Article  Google Scholar 

  4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10{^{20}}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

    Article  MATH  Google Scholar 

  7. Das, D., Chakrabarti, P.P., Kumar, R.: Functional verification of task partitioning for multiprocessor embedded systems. ACM Trans. Des. Autom. Electr. Syst., 12(4) (2007)

    Google Scholar 

  8. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kordon, F., et al.: The MCC web page. http://mcc.lip6.fr

  10. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)

    Article  Google Scholar 

  11. Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reachability analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Huber, P., Jensen, A.M., Jepsen, L.O., Jensen, K.: Reachability trees for high-level Petri nets. Theor. Comput. Sci. 45(3), 261–292 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Junttila, T.A.: Computational complexity of the place/transition-net symmetry reduction method. J. UCS 7(4), 307–326 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 645–659. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Kordon, F.: Report from MCC at PETRI NETS (2014)

    Google Scholar 

  16. Kordon, F.: Report from MCC at PETRI NETS (2015)

    Google Scholar 

  17. Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods for state properties. Formal Methods Syst. Des. 29(3), 215–251 (2006)

    Article  MATH  Google Scholar 

  18. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: verification and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Oanea, O., Wimmel, H., Wolf, K.: New algorithms for deciding the siphon-trap property. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 267–286. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Schmidt, K.: How to calculate symmetries of Petri nets. Acta Inf. 36(7), 545–590 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Schmidt, K.: Automated generation of a progress measure for the sweep-line method. STTT 8(3), 195–203 (2006)

    Article  Google Scholar 

  23. Stahl, C., Reisig, W., Krstic, M.: Hazard detection in a GALS wrapper: a case study. In: Proceedings of ACSD. IEEE (2005)

    Google Scholar 

  24. Talcott, C., Dill, D.L.: The pathway logic assistant. In: Proceedings of Computational Methods in Systems Biology (2005)

    Google Scholar 

  25. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  26. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Logical Meth. Comput. Sci. 8(3) (2012)

    Google Scholar 

  27. Wolf, K.: Generating Petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, K. (2016). Running LoLA 2.0 in a Model Checking Competition. In: Koutny, M., Desel, J., Kleijn, J. (eds) Transactions on Petri Nets and Other Models of Concurrency XI. Lecture Notes in Computer Science(), vol 9930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53401-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53401-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53400-7

  • Online ISBN: 978-3-662-53401-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics