Running LoLA 2.0 in a Model Checking Competition

  • Karsten Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9930)


We report on the performance of the tool LoLA 2.0 in the model checking contest (MCC) 2015. As in the years before, LoLA ranked first in the reachability category of the contest. We identify critical success factors and discuss the impact of the contest design. Conclusions include further improvements for the tool as well as suggestions concerning the setup of future contests.


Model Check Symbolic Model Checker Symmetry Method State Space Exploration State Space Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Billington, J., et al.: The Petri Net Markup Language: concepts, technology, and tools. In: Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)CrossRefGoogle Scholar
  4. 4.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10{^{20}}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Das, D., Chakrabarti, P.P., Kumar, R.: Functional verification of task partitioning for multiprocessor embedded systems. ACM Trans. Des. Autom. Electr. Syst., 12(4) (2007)Google Scholar
  8. 8.
    David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kordon, F., et al.: The MCC web page.
  10. 10.
    Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)CrossRefGoogle Scholar
  11. 11.
    Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reachability analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Huber, P., Jensen, A.M., Jepsen, L.O., Jensen, K.: Reachability trees for high-level Petri nets. Theor. Comput. Sci. 45(3), 261–292 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Junttila, T.A.: Computational complexity of the place/transition-net symmetry reduction method. J. UCS 7(4), 307–326 (2001)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 645–659. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Kordon, F.: Report from MCC at PETRI NETS (2014)Google Scholar
  16. 16.
    Kordon, F.: Report from MCC at PETRI NETS (2015)Google Scholar
  17. 17.
    Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods for state properties. Formal Methods Syst. Des. 29(3), 215–251 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: verification and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 46–60. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Oanea, O., Wimmel, H., Wolf, K.: New algorithms for deciding the siphon-trap property. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 267–286. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Schmidt, K.: How to calculate symmetries of Petri nets. Acta Inf. 36(7), 545–590 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Schmidt, K.: Automated generation of a progress measure for the sweep-line method. STTT 8(3), 195–203 (2006)CrossRefGoogle Scholar
  23. 23.
    Stahl, C., Reisig, W., Krstic, M.: Hazard detection in a GALS wrapper: a case study. In: Proceedings of ACSD. IEEE (2005)Google Scholar
  24. 24.
    Talcott, C., Dill, D.L.: The pathway logic assistant. In: Proceedings of Computational Methods in Systems Biology (2005)Google Scholar
  25. 25.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  26. 26.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Logical Meth. Comput. Sci. 8(3) (2012)Google Scholar
  27. 27.
    Wolf, K.: Generating Petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für InformatikUniversität RostockRostockGermany

Personalised recommendations