On Scaling Decentralized Blockchains

(A Position Paper)
  • Kyle Croman
  • Christian DeckerEmail author
  • Ittay Eyal
  • Adem Efe Gencer
  • Ari Juels
  • Ahmed Kosba
  • Andrew Miller
  • Prateek Saxena
  • Elaine Shi
  • Emin Gün Sirer
  • Dawn Song
  • Roger Wattenhofer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9604)


The increasing popularity of blockchain-based cryptocurrencies has made scalability a primary and urgent concern. We analyze how fundamental and circumstantial bottlenecks in Bitcoin limit the ability of its current peer-to-peer overlay network to support substantially higher throughputs and lower latencies. Our results suggest that reparameterization of block size and intervals should be viewed only as a first increment toward achieving next-generation, high-load blockchain protocols, and major advances will additionally require a basic rethinking of technical approaches. We offer a structured perspective on the design space for such approaches. Within this perspective, we enumerate and briefly discuss a number of recently proposed protocol ideas and offer several new ideas and open challenges.


Block Size Overlay Network Maximum Throughput Network Plane Effective Throughput 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported in part by NSF grants CNS-1314857, CNS-1453634, CNS-1518765, CNS-1514261, CNS-1518899, a Packard Fellowship, a Sloan Fellowship, two Google Faculty Research Awards, and a VMWare Research Award.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Amazon EC2 pricing. Accessed 30 Oct 2015
  8. 8.
  9. 9.
    Litecoin, open source P2P digital currency.
  10. 10.
  11. 11., Decentralized Financial Ecosystem (2015).
  12. 12.
    Shelat, A., Pass, R.: Micropayments for peer-to-peer currencies. In: CCS (2015)Google Scholar
  13. 13.
    Andresen, G.: Increase maximum block size (BIP 101). Accessed Oct 2015
  14. 14.
    Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. In: SPAA (2006)Google Scholar
  15. 15.
    Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged sidechains. Accessed 26 Nov 2015
  16. 16.
    Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Ben-Sasson, E., Chiesa, A., Tromer, E. Virza, M.: Succinct non-interactive zero knowledge for a von neumann architecture. In: Security (2014)Google Scholar
  18. 18.
    Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s proof of work via proof of stake.
  19. 19.
    Corallo, M.: High-speed Bitcoin relay network, December 2015.
  20. 20.
    Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In: IEEE P2P, pp. 1–10. IEEE (2013)Google Scholar
  21. 21.
    Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  22. 22.
    Dolev, S., Tzachar, N.: Spanders: distributed spanning expanders. Sci. Comput. ProgGoogle Scholar
  23. 23.
    Eric Lombrozo, P.W., Lau, J.: Segregated witness (consensus layer).
  24. 24.
    Escriva, R., Wong, B., Sirer, E.G.: Warp: Lightweight Multi-Key Transactions for Key-Value Stores.
  25. 25.
    Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. Technical report, CoRR (2015)Google Scholar
  26. 26.
    Garzik, J.: Block size increase to 2MB (BIP 102). Accessed Oct 2015
  27. 27.
    Garzik, J.: Making decentralized economic policy. Accessed Oct 2015
  28. 28.
    Georgiou, C., Gilbert, S., Guerraoui, R., Kowalski, D.R.: Asynchronous gossip. J. ACM 60(2) (2013)Google Scholar
  29. 29.
    Glendenning, L., Beschastnikh, I., Krishnamurthy, A., Anderson, T.: Scalable consistency in Scatter. In: SOSP (2011)Google Scholar
  30. 30.
    Guerraoui, R., Huc, F., Kermarrec, A.-M.: Highly dynamic distributed computing with byzantine failures. In: PODC (2013)Google Scholar
  31. 31.
    Johansen, H.D., Renesse, R.V., Vigfusson, Y., Johansen, D.: Fireflies: a secure and scalable membership and gossip service. ACM Trans. Comput. Syst. (2015)Google Scholar
  32. 32.
    Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: FOCS (2000)Google Scholar
  33. 33.
    King, S., Nadal, S.: PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake, August 2012Google Scholar
  34. 34.
    Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R., Shelat, A., Shi, E.: How to use snarks in universally composable protocols. Cryptology ePrint Archive, Report 2015/1093 (2015).
  35. 35.
    Law, C., Siu, K.-Y.: Distributed construction of random expander networks. In: IEEE INFOCOM, pp. 2133–2143 (2003)Google Scholar
  36. 36.
    Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In: FC (2015)Google Scholar
  37. 37.
  38. 38.
    Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communication complexity. IEEE Trans. Inf. Theory (2003)Google Scholar
  39. 39.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009).
  40. 40.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: S&P (2013)Google Scholar
  41. 41.
    Poon, J., Dryja, T.: The bitcoin lightning network. Accessed 26 Nov 2015
  42. 42.
    Rizun, P.: A transaction fee market exists without a block size limit (2015)Google Scholar
  43. 43.
    Sen, S., Freedman, M.J.: Commensal cuckoo: secure group partitioning for large-scale services. SIGOPS Oper. Syst. Rev. (2012)Google Scholar
  44. 44.
    Shin, L.: Bitcoin blockchain technology in financial services: how the disruption will play out. Forbes, 14 September 2015Google Scholar
  45. 45.
    Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In: FC (2015)Google Scholar
  46. 46.
  47. 47.
    van Renesse, R., Dumitriu, D., Gough, V., Thomas, C.: Efficient reconciliation and flow control for anti-entropy protocols. In: LADIS (2008)Google Scholar
  48. 48.
    Wilson, L.: Average electricity prices around the world.
  49. 49.
    Wood, G.: Ethereum: a secure decentralized transaction ledger (2014).
  50. 50.
    Wuille, P.: Block size following technological growth (BIP 103). Accessed Nov 2015
  51. 51.
    Xie, C., Su, C., Littley, C., Alvisi, L., Kapritsos, M., Wang, Y.: High-performance ACID via modular concurrency control. In: SOSP (2015)Google Scholar

Copyright information

© International Financial Cryptography Association 2016

Authors and Affiliations

  • Kyle Croman
    • 1
    • 2
  • Christian Decker
    • 5
    Email author
  • Ittay Eyal
    • 1
    • 2
  • Adem Efe Gencer
    • 1
    • 2
  • Ari Juels
    • 1
    • 3
  • Ahmed Kosba
    • 1
    • 4
  • Andrew Miller
    • 1
    • 4
  • Prateek Saxena
    • 7
  • Elaine Shi
    • 1
    • 2
  • Emin Gün Sirer
    • 1
    • 2
  • Dawn Song
    • 1
    • 6
  • Roger Wattenhofer
    • 5
  1. 1.Initiative for CryptoCurrencies and Contracts (IC3)IthacaUSA
  2. 2.Cornell UniversityIthacaUSA
  3. 3.Jacobs, Cornell TechNew YorkUSA
  4. 4.UMDCollege ParkUSA
  5. 5.ETHZürichSwitzerland
  6. 6.UC BerkeleyBerkeleyUSA
  7. 7.NUSSingaporeSingapore

Personalised recommendations