Advertisement

Deciding Maxmin Reachability in Half-Blind Stochastic Games

  • Edon Kelmendi
  • Hugo Gimbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9928)

Abstract

Two-player, turn-based, stochastic games with reachability conditions are considered, where the maximizer has no information (he is blind) and is restricted to deterministic strategies whereas the minimizer is perfectly informed. We ask the question of whether the game has maxmin value of 1 in other words we ask whether for all \(\epsilon >0\) there exists a deterministic strategy for the (blind) maximizer such that against all the strategies of the minimizer, it is possible to reach the set of final states with probability larger than \(1-\epsilon \). This problem is undecidable in general, but we define a class of games, called leaktight half-blind games where the problem becomes decidable. We also show that mixed strategies in general are stronger for both players and that optimal strategies for the minimizer might require infinite-memory.

References

  1. 1.
    Bertoni, A.: The solution of problems relative to probabilistic automata in the frame of the formal languages theory. In: Siefkes, D. (ed.) Gl-4.Jahrestagung: LNCS, vol. 26, pp. 107–112. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  2. 2.
    Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata on infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Chatterjee, K., Doyen, L.: Partial-observation stochastic games: how to win when belief fails. ACM Trans. Comput. Logic (TOCL) 15(2), 16 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The complexity of partial-observation stochastic parity games with finite-memory strategies. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 242–257. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Henzinger, T.A.: Semiperfect-information games. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 1–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Tracol, M.: Decidable problems for probabilistic automata on infinite words. In: 2012 27th Annual IEEE Symposium on Logic in Computer Science (LICS), vol. 2, pp. 185–194. IEEE (2012)Google Scholar
  7. 7.
    Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Colcombet, T.: Regular cost functions, part I: logic and algebra overwords. Logical Methods Comput. Sci. 9(3), 47 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theor. Comput. Sci. 386(3), 188–217 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fijalkow, N.: Profinite techniques for probabilistic automata and the optimality of the markov monoid algorithm. CoRR, abs/1501.02997 (2015)Google Scholar
  11. 11.
    Fijalkow, N., Gimbert, H., Kelmendi, E., Oualhadj, Y: Deciding the value 1 problem for probabilistic leaktight automata. Logical Methods Comput. Sci. 11(2) (2015)Google Scholar
  12. 12.
    Fijalkow, N., Gimbert, H., Oualhadj, Y.: Deciding the value 1 problem for probabilistic leaktight automata. In: LICS, pp. 295–304. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: decidable and undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gimbert, H., Renault, J., Sorin, S., Venel, X., Zielonka, W.: On the values of repeated games with signals. CoRR, abs/1406.4248 (2014)Google Scholar
  15. 15.
    Kelmendi, E., Gimbert, H.: Deciding maxmin reachability in half-blind stochastic games. CoRR, abs/1605.07753 (2016). http://arxiv.org/abs/1605.07753
  16. 16.
    Paz, A.: Some aspects of probabilistic automata. Inf. Control 9(1), 26–60 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Simon, I.: On semigroups of matrices over the tropical semiring. ITA 28(3–4), 277–294 (1994)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LaBRIBordeauxFrance
  2. 2.LaBRI & CNRSBordeauxFrance

Personalised recommendations