Strong and Weak Acyclicity in Iterative Voting

  • Reshef Meir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9928)


We cast the various different models used for the analysis of iterative voting schemes into a general framework, consistent with the literature on acyclicity in games. More specifically, we classify convergence results based on the underlying assumptions on the agent scheduler (the order of players) and the action scheduler (the response played by the agent).

Our main technical result is proving that Plurality with randomized tie-breaking (which is not guaranteed to converge under arbitrary agent schedulers) is weakly-acyclic. I.e., from any initial state there is some path of better-replies to a Nash equilibrium. We thus show a separation between restricted-acyclicity and weak-acyclicity of game forms, thereby settling an open question from [17]. In addition, we refute another conjecture by showing the existence of strongly-acyclic voting rules that are not separable.


Nash Equilibrium Vote Rule Game Form Preference Profile Plurality Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andersson, D., Gurvich, V., Hansen, T.D.: On acyclicity of games with cycles. Discrete Appl. Math. 158(10), 1049–1063 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Apt, K.R., Simon, S.: A classification of weakly acyclic games. In: Serna, M. (ed.) SAGT 2012. LNCS, vol. 7615, pp. 1–12. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Boros, E., Gurvich, V., Makino, K., Papp, D.: Acyclic, or totally tight, two-person game forms: characterization and main properties. Discrete Math. 310(6), 1135–1151 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bowling, M.: Convergence and no-regret in multiagent learning. Adv. Neural Inf. Process. Syst. 17, 209–216 (2005)Google Scholar
  5. 5.
    Bowman, C., Hodge, J.K., Ada, Y.: The potential of iterative voting to solve the separability problem in referendum elections. Theor. Decis. 77(1), 111–124 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brânzei, S., Caragiannis, I., Morgenstern, J., Procaccia, A.D.: How bad is selfish voting? In: Proceeding of 27th AAAI (2013)Google Scholar
  7. 7.
    Cournot, A.-A.: Recherches sur les principes mathématiques de la théorie des richesses par Augustin Cournot. chez L. Hachette (1838)Google Scholar
  8. 8.
    Elkind, E., Grandi, U., Rossi, F., Slinko, A.: Gibbard-satterthwaite games. In: IJCAI 2015 (2015)Google Scholar
  9. 9.
    Fabrikant, A., Jaggard, A.D., Schapira, M.: On the structure of weakly acyclic games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 126–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Gärdenfors, P.: Manipulation of social choice functions. J. Econ. Theory 13(2), 217–228 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gohar, N.: Manipulative voting dynamics. PhD thesis, University of Liverpool (2012)Google Scholar
  12. 12.
    Grandi, U., Loreggia, A., Rossi, F., Venable, K.B., Walsh, T.: Restricted manipulation in iterative voting: condorcet efficiency and borda score. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS, vol. 8176, pp. 181–192. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Kelly, J.S.: Strategy-proofness and social choice functions without singlevaluedness. Econometrica: J. Econometric Soc. 439–446 (1977)Google Scholar
  14. 14.
    Koolyk, A., Lev, O., Rosenschein, J.S.: Convergence and quality of iterative voting under non-scoring rules (extended abstract). In: Proceeding of 15th AAMAS (2016)Google Scholar
  15. 15.
    Kukushkin, N.S.: Congestion games: a purely ordinal approach. Econ. Lett. 64, 279–283 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kukushkin, N.S.: Perfect information and congestion games. Games Econ. Behav. 38, 306–317 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kukushkin, N.S.: Acyclicity of improvements in finite game forms. Int. J. Game Theory 40(1), 147–177 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Lev, O.: Agent modeling of human interaction: stability, dynamics and cooperation. PhD thesis, The Hebrew University of Jerusalem (2015)Google Scholar
  19. 19.
    Lev, O., Rosenschein, J.S.: Convergence of iterative voting. In: Proceeding of 11th AAMAS, pp. 611–618 (2012)Google Scholar
  20. 20.
    Marden, J.R., Arslan, G., Shamma, J.S.: Regret based dynamics: convergence in weakly acyclic games. In: Proceeding of 6th AAMAS. ACM (2007)Google Scholar
  21. 21.
    Meir, R., Polukarov, M., Rosenschein, J.S., Jennings, N.R.: Acyclic games and iterative voting. ArXiv e-prints (2016)Google Scholar
  22. 22.
    Meir, R.: Plurality voting under uncertainty. In: Proceeding of 29th AAAI, pp. 2103–2109 (2015)Google Scholar
  23. 23.
    Meir, R.: Strong and weak acyclicity in iterative voting. In: COMSOC 2016 (2016)Google Scholar
  24. 24.
    Meir, R., Lev, O., Rosenschein, J.S.: A local-dominance theory of voting equilibria. In: Proceeding of 15th ACM-EC (2014)Google Scholar
  25. 25.
    Meir, R., Polukarov, M., Rosenschein, J.S., Jennings, N.: Convergence to equilibria of plurality voting. In: Proceeding of 24th AAAI, pp. 823–828 (2010)Google Scholar
  26. 26.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13(1), 111–124 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Obraztsova, S., Markakis, E., Polukarov, M., Rabinovich, Z., Jennings, N.R.: On the convergence of iterative voting: how restrictive shouldrestricted dynamics be? In: Proceeding of 29th AAAI (2015)Google Scholar
  29. 29.
    Obraztsova, S., Markakis, E., Thompson, D.R.M.: Plurality voting with truth-biased agents. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 26–37. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Reijngoud, A., Endriss, U.: Voter response to iterated poll information. In: Proceeding of 11th AAMAS, pp. 635–644 (2012)Google Scholar
  31. 31.
    Reyhani, R., Wilson, M.C.: Best-reply dynamics for scoring rules. In: Proceeding of 20th ECAI. IOS Press (2012)Google Scholar
  32. 32.
    Roth, A.E.: The college admissions problem is not equivalent to the marriage problem. J. Econ. Theory 36(2), 277–288 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Tal, M., Meir, R., Gal, Y.: A study of human behavior in voting systems. In: Proceeding of 14th AAMAS, pp. 665–673 (2015)Google Scholar
  34. 34.
    Xia, L., Lang, J., Ying, M.: Sequential voting rules and multiple elections paradoxes. In: TARK 2007, pp. 279–288 (2007)Google Scholar
  35. 35.
    Young, H.P.: The evolution of conventions. Econometrica: J. Econometric Soc., 57–84 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Technion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations