Skip to main content

Control Design Based on State-Space Model

  • Chapter
  • First Online:
  • 1239 Accesses

Part of the book series: Energy and Environment Research in China ((EERC))

Abstract

In this chapter, the methodology of MPC in terms of the formulation, model structure, and solving method is first briefly reviewed. Then, Wiener, Hammerstein, and Hammerstein–Weiner structures are introduced, which can be used to handle the nonlinearity in a building system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–764 (2003)

    Article  Google Scholar 

  2. Zhang, Y., Hanby, V.I.: Model-based control of renewable energy systems in buildings. HVAC&R Res. 12(3a), 739–760 (2006)

    Article  Google Scholar 

  3. Yuan, S., Perez, R.: Multiple-zone ventilation and temperature control of a single-duct VAV system using model predictive strategy. Energy Build. 38(10), 1248–1261 (2006)

    Article  Google Scholar 

  4. Freire, R.Z., Oliveira, G.H.C., Mendes, N.: Predictive controllers for thermal comfort optimization and energy savings. Energy Build. 40(7), 1352–1365 (2008)

    Article  Google Scholar 

  5. Kolokotsa, D., Pouliezos, A., Stavrakakis, G., Lazos, C.: Predictive control techniques for energy and indoor environmental quality management in buildings. Build. Environ. 44(9), 1850–1863 (2009)

    Article  Google Scholar 

  6. Spindler, H.C., Norfod, L.K.: Naturally ventilated and mixed-mode buildings—part II: Optimal control. Build. Environ. 44(4), 750–761 (2009)

    Article  Google Scholar 

  7. Moroşan, P.D., Bourdais, R., Dumur, D., Buisson, J.: Building temperature regulation using a distributed model predictive control. Energy Build. 42(9), 1445–1452 (2010)

    Article  Google Scholar 

  8. Ostendorp, P.M., Henze, G.P.: Model-predictive control of mixed-mode buildings with rule extraction. Build. Environ. 46(2), 428–437 (2011)

    Article  Google Scholar 

  9. Karlsson, H., Hagentoft, C.E.: Application of model based predictive control for water-based floor heating in low energy residential buildings. Build. Environ. 46(5), 556–569 (2011)

    Article  Google Scholar 

  10. Kim, S.H.: Building demand-side control using thermal energy storage under uncertainty: an adaptive multiple model-based predictive control approach. Build. Environ. 67(9), 111–128 (2012)

    Google Scholar 

  11. Hazyuk, I., Ghiaus, C., Penhouet, D.: Optimal temperature control of intermittently heated buildings using model predictive control: part II—control algorithm. Build. Environ. 51(2), 388–394 (2002)

    Google Scholar 

  12. Wang, S., Ma, Z.: Supervisory and optimal control of building HVAC systems: a review. HVAC&R Res. 14(1), 3–32 (2008)

    Article  Google Scholar 

  13. Findeisen, R., Allgower, F.: An introduction to nonlinear model predictive control. In: 21st Benelux Meeting on Systems and Control, Veidhoven (2002)

    Google Scholar 

  14. Allgower, F., Findeisen, R., Nagy, Z.K.: Nonlinear model predictive control: from theory to application. J. Chin. Inst. Chem. Eng. 35(3), 299–315 (2004)

    Google Scholar 

  15. Henson, M.A.: Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. 23, 187–202 (1998)

    Article  Google Scholar 

  16. Bequette, B.W.: Nonlinear model predictive control: a personal retrospective. Can. J. Chem. Eng. 85, 408–415 (2007)

    Article  Google Scholar 

  17. Ydstie, B.E.: Extended horizon adaptive control. In: 9th IFAC World Congress, Budapest, Hungary (1984)

    Google Scholar 

  18. Pathwardhan, R.S., Lakshminarayanan, S., Shah, S.L.: Constrained nonlinear MPC using Hammerstein and Wiener models: PLS framework. AIChE J. 44(7), 1611–1622 (1998)

    Article  Google Scholar 

  19. Jakobsen, A.., Rasmussen, B., Skovrup, M.J., Fredsted, J.: Development of energy optimal capacity control in refrigeration systems. In: International Refrigeration and Air Conditioning Conference, pp. 329–336 (2000)

    Google Scholar 

  20. Leducq, D., Guilpart, J., Trystram, G.: Nonlinear predictive control of a vapor compression cycle. Int. J. Refrig. 29, 761–772 (2006)

    Article  Google Scholar 

  21. Jordan, A.J.: Linearization of nonlinear state equations. Bull. Pol. Acad. Sci.—Tech. Sci. 54(1), 63–73 (2006)

    MATH  Google Scholar 

  22. Jordan, A., Nowacki, J.P.: Global linearization of non-linear state equations. Int. J. Appl. Electromagn. Mech. 19, 637–642 (2003)

    Google Scholar 

  23. Friedland, B.: Control System Design: An Introduction to State-Space Methods. ISBN-10: 0486442780 (2005)

    Google Scholar 

  24. Ogata, K.: Modern control engineering. ISBN- 10, 0136156738 (2009)

    Google Scholar 

  25. Jurinak, J.J.: Open Cycle Solid Desiccant Cooling—Component Models and system Simulations. PhD Thesis University of Wisconsin–Madison (1982)

    Google Scholar 

  26. Deng, K., Barooah, P., Metha, P.G., Meyn, S.P.: Building thermal model reduction via aggregation of states. In: Proceedings of ACC 2010 (2010)

    Google Scholar 

  27. Skartveit, A., Oleseth, J.A.: A model for the diffuse fraction of hourly global radiation. Sol. Energy 38(4), 271–274 (1987)

    Article  Google Scholar 

  28. Skartveit, A., Oleseth, J.A., Tuft, M.E.: An hourly diffuse fraction model with correction for variability and surface albedo. Sol. Energy 63(3), 173–183 (1998)

    Article  Google Scholar 

  29. Liu, B.Y.H., Jordan, R.C.: A rational procedure for predicting the long-term average performance of flat-plate solar-energy collectors. Sol. Energy 7(2), 53–74 (1963)

    Article  Google Scholar 

  30. ASHRAE.: ANSI/ASHRAE Standard 55-2004 Thermal environmental conditions for human occupancy (2004)

    Google Scholar 

  31. ISO.: ISO Standard 7730: ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (2005)

    Google Scholar 

  32. Li, J.: Theory and Method of Linear Control System. Xi’an Electronic and Science University press, Xi’an (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Yao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Yao, Y., Yu, Y. (2017). Control Design Based on State-Space Model. In: Modeling and Control in Air-conditioning Systems. Energy and Environment Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53313-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53313-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53311-6

  • Online ISBN: 978-3-662-53313-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics