The Mechanism of Sonophoresis and the Penetration Pathways



Sonophoresis uses ultrasound as a physical enhancer for systemic transdermal drug delivery (TDD). Low-frequency sonophoresis in the range of 20–100 kHz has been demonstrated to enhance the transdermal delivery of various low-molecular weight drugs and high-molecular weight proteins across the human skin. The bioeffects of ultrasound in tissues are mediated by thermal and nonthermal effects. Ultrasound-induced skin heating causes fluidization of stratum corneum (SC) lipids, facilitating transdermal permeation of molecules. Cavitation is the nonthermal effect of ultrasound and is believed to be the main mechanism of enhanced transdermal delivery in sonophoresis, by creating shock waves and acoustic micro-jets on the SC surface. Among the three different percutaneous penetration pathways including the intercellular, transcellular, and follicular penetration routes, both intercellular and transcellular pathways are primarily created and facilitated during ultrasound exposure for TDD. Sonophoresis may act synergistically with various other physical and chemical penetration enhancement methods in promoting transdermal drug delivery. The ratio of frequency and peak rare-fractional pressure, the distance between the surface of transducer and the skin surface, and the properties of the coupling medium such as the viscosity, density, acoustic impedance and the composition of the gas and liquid phases are factors affecting the efficacy of TDD using ultrasound. Sonophoresis has been widely used for TDD, such as transcutaneous immunization and gene therapy and as a noninvasive transdermal monitoring method. In addition, sonophoresis represents a safe and effective method for TDD.


Sonophoresis Transdermal drug delivery Cavitation Penetration enhancement Penetration pathways 


  1. Al-Bataineh OM, Lweesy K, Fraiwan L (2011) In-vivo evaluation of a noninvasive transdermal insulin delivery system utilizing ultrasound transducers. J Med Imag Health Inform 1:267–270CrossRefGoogle Scholar
  2. Al-Bataineh OM, Lweesy K, Fraiwan L (2012) Noninvasive transdermal insulin delivery using piston-shaped PZT transducers: in vivo rabbits evaluation. Jordan J Mech Indust Eng 6:11–16Google Scholar
  3. Alvarez-Román R, Merino G, Kalia YN, Naik A, Guy RH (2003) Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. J Pharm Sci 92(6):1138–1146PubMedCrossRefGoogle Scholar
  4. Babiuk S, Baca-Estrada M, Babiuk LA, Ewen C, Foldvari M (2000) Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery. J Control Rel 66(2/3):199–214CrossRefGoogle Scholar
  5. Barnett SB, ter Haar GR, Ziskin MC, Nyborg WL, Maeda K, Bang J (1994) Current status of research on biophysical effects of ultrasound. Ultrasound Med Biol 20:205–218PubMedCrossRefGoogle Scholar
  6. Benson HAE, McElnay JC, Harland R (1988) Phonophoresis of lignocaine and prilocaine from Emla cream. Int J Pharm 44:65–69CrossRefGoogle Scholar
  7. Benson HA, McElnay JC, Harland R, Hadgraft J (1991) Influence of ultrasound on the percutaneous absorption of nicotinate esters. Pharm Res 8(2):204–209PubMedCrossRefGoogle Scholar
  8. Bommannan D, Okuyama H, Stauffer P, Guy RH (1992a) Sonophoresis. I. The use of high-frequency ultrasound to enhance transdermal drug delivery. Pharm Res 9(4):559–564PubMedCrossRefGoogle Scholar
  9. Bommannan D, Menon GK, Okuyama H, Elias PM, Guy RH (1992b) Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharm Res 9(8):1043–1047PubMedCrossRefGoogle Scholar
  10. Boucaud A, Machet L, Arbeille B, Machet MC, Sournac M, Mavon A, Patat F, Vaillant L (2001) In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm 228:69–77PubMedCrossRefGoogle Scholar
  11. Cagnie B, Vinck E, Rimbaut S, Vanderstraeten G (2003) Phonophoresis versus topical application of ketoprofen: comparison between tissue and plasma levels. Phys Ther 83(8):707–712PubMedGoogle Scholar
  12. Carvell KJ, Bigelow TA (2011) Dependence of optimal seed bubble size on pressure amplitude at therapeutic pressure levels. Ultrasonics 51:115–122PubMedCrossRefGoogle Scholar
  13. Cevc G, Schatzlein A, Blume G (1995) Transdermal drug carriers: basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. J Control Release 36:3–16CrossRefGoogle Scholar
  14. Collis J, Manasseh R, Liovic P, Tho P, Ooi A, Petkovic-Duran K, Zhu Y (2010) Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 50:273–279PubMedCrossRefGoogle Scholar
  15. Colussi AJ, Weavers LK, Hoffmann MR (1998) Chemical bubble dynamics and quantitative sonochemistry. J Phys Chem 102:6927–6934CrossRefGoogle Scholar
  16. Crum LA (1984) Rectified diffusion. Ultrasonics 22:215–223CrossRefGoogle Scholar
  17. Dahlan A, Alpar HO, Murdan S (2009a) An investigation into the combination of low frequency ultrasound and liposomes on skin permeability. Int J Pharm 379:139–142PubMedCrossRefGoogle Scholar
  18. Dahlan A, Alpar HO, Stickings P, Sesardic D, Murdan S (2009b) Transcutaneous immunisation assisted by low-frequency ultrasound. Int J Pharm 368:123–128PubMedCrossRefGoogle Scholar
  19. Darrow H, Schulthies S, Draper D, Ricard M, Measom GJ (1999) Serum dexamethasone levels after Decadron phonophoresis. J Athl Train 34:338–341PubMedPubMedCentralGoogle Scholar
  20. Dias M, Farinha A, Faustino E, Hadgraft J, Pais J, Toscano C (1999) Topical delivery of caffeine from some commercial formulations. Int J Pharm 182:41–47PubMedCrossRefGoogle Scholar
  21. Edwards DA, Langer R (1994) A linear theory of transdermal transport phenomena. J Pharm Sci 83(9):1315–1334PubMedCrossRefGoogle Scholar
  22. Fellinger K, Schmid J, Klinik AN (1954) Therapie des Chronischen (transl.Clinical experience/practice about the therapy of the chronic (illness).Gelenkreumatismus (transl. Articular Rheumatism): 549–552Google Scholar
  23. Ferrante doAmaral CE, Wolf B (2008) Current development in non-invasive glucose monitoring. Med Eng Phys 30:541–549CrossRefGoogle Scholar
  24. Fiorillo AS, Grimaldi D, Paolino D, Pullano SA (2012) Low-frequency ultrasound in medicine: an in vivo evaluation. IEEE Trans Instrument Measure 61(6):1658–1663CrossRefGoogle Scholar
  25. Fry WJ (1954) Intense ultrasound: a new tool for neurological research. J Ment Sci 100:85–96PubMedGoogle Scholar
  26. Fry WJ, Mosberg W, Barnard JW (1954) Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11:471–478PubMedCrossRefGoogle Scholar
  27. Fry FJ, Ades HW, Fry WJ (1958) Production of reversible changes in the central nervous system by ultrasound. Science 127:83–84PubMedCrossRefGoogle Scholar
  28. Griffin JE (1966) Physiological effects of ultrasonic energy as it is used clinically. J Am Phys Ther Assoc 46:18–26Google Scholar
  29. Griffin JE, Touchstone JC (1968) Low-intensity phonophoresis of cortisol in swine. Phys Ther 48(12):1336–1344PubMedGoogle Scholar
  30. Griffin JE, Echternach JL, Price RE, Touchstone JC (1967) Patients treated with ultrasonic driven hydrocortisone and with ultrasound alone. Phys Ther 47(7):594–601PubMedGoogle Scholar
  31. Gupta J, Prausnitz MR (2009) Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med Biol 35(8):1405–1408PubMedPubMedCentralCrossRefGoogle Scholar
  32. Harvey EN, Barnes DK, McElroy WD, Whiteley AH, Pease DC, Cooper KW (1944) Bubble formation in animals. I. Physical factors. J Cell Comp Physiol 24(1):1–22CrossRefGoogle Scholar
  33. Herwadkar A, Sachdeva V, Taylor LF, Silver H, Banga AK (2012) Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm 423(2):289–296PubMedCrossRefGoogle Scholar
  34. International Electrotechnical Commission (IEC) Ed 3.0. EN 60601-2-5. Medical electrical equipment. Particular requirements for the basic safety and essential performance of ultrasonic physiotherapy equipment. IEC, Geneva, Switzerland (2009)Google Scholar
  35. Johnson ME, Mitragotri S, Patel A, Blankschtein D, Langer R (1996) Synergistic effect of ultrasound and chemical enhancers on transdermal drug delivery. J Pharm Sci 85:670–679PubMedCrossRefGoogle Scholar
  36. Kalluri H, Banga AK (2011) Transdermal delivery of proteins. AAPS PharmSciTech 12(1):431–441PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kane A, Lloyd J, Zaffran M, Simonsen L, Kane M (1999) Transmission of hepatitis B, hepatitis C and human immunodeficiency viruses through unsafe injections in the developing world: model-based regional estimates. Bull World Health Organ 77(10):801–807PubMedPubMedCentralGoogle Scholar
  38. Katz JI (1995) Jets from collapsing bubbles. Proc R Soc Lond A 455:323–328CrossRefGoogle Scholar
  39. Kim do K, Choi SW, Kwak YH (2012) The effect of SonoPrep® on EMLA® cream application for pain relief prior to intravenous cannulation. Eur J Pediatr 171(6):985–988PubMedCrossRefGoogle Scholar
  40. Kost J, Pliquett U, Mitragotri S, Yamamoto A, Langer R, Weaver J (1996) Synergistic effect of electric field and ultrasound on transdermal transport. Pharm Res 13(4):633–638PubMedCrossRefGoogle Scholar
  41. Kushner J 4th, Blankschtein D, Langer R (2008a) Heterogeneity in skin treated with low-frequency ultrasound. J Pharm Sci 97(10):4119–4128PubMedCrossRefGoogle Scholar
  42. Kushner J 4th, Blankschtein D, Langer R (2008b) Evaluation of hydrophilic permeant transport parameters in the localized and non-localized transport regions of skin treated simultaneously with low-frequency ultrasound and sodium lauryl sulfate. J Pharm Sci 97:894–906Google Scholar
  43. Lavon I, Kost J (2004) Ultrasound and transdermal drug delivery. Drug Discov Today 9(15):670–676PubMedCrossRefGoogle Scholar
  44. Lavon I, Grossman N, Kost J, Kimmel E, Enden G (2007) Bubble growth within the skin by rectified diffusion might play a significant role in sonophoresis. J Control Release 117(2):246–255PubMedCrossRefGoogle Scholar
  45. Le L, Kost J, Mitragotri S (2000) Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm Res 17(9):1151–1154PubMedCrossRefGoogle Scholar
  46. Lee S, McAuliffe DJ, Flotte TJ, Kollias N, Doukas AG (1998) Photomechanical transcutaneous delivery of macromolecules. J Invest Dermatol 111:925–929PubMedCrossRefGoogle Scholar
  47. Lee S, Snyder B, Newnham RE, Smith NB (2005) Noninvasive ultrasonic transdermal insulin delivery in rabbits using the light-weight cymbal array. Diabetes Technol Ther 6:808–815CrossRefGoogle Scholar
  48. Lee S, Choi K, Menon GK, Kim H, Choi E, Ahn S, Lee S (2010) Penetration pathways induced by low-frequency sonophoresis with physical and chemical enhancers: iron oxide nanoparticles versus lanthanum nitrates. J Invest Dermatol 130:1063–1072PubMedCrossRefGoogle Scholar
  49. Leighton TG (1997) The acoustic bubble. Academic, LondonGoogle Scholar
  50. Lokhandwalla M, Sturtevant B (2000) Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 45:1923–1940PubMedCrossRefGoogle Scholar
  51. Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P (2006) Effect of preparation technique on the properties of liposomes encapsulating ketoprofen–cyclodextrin complexes aimed for transdermal delivery. Int J Pharm 312:53–60PubMedCrossRefGoogle Scholar
  52. Maione E, Shung KK, Meyer RJ Jr, Hughes JW, Newnham RE, Smith NB (2002) Transducer design for a portable ultrasound enhanced transdermal drug-delivery system. IEEE Trans Ultrason Ferroelectr Freq Control 49(10):1430–1436PubMedCrossRefGoogle Scholar
  53. Maruani A, Vierron E, Machet L, Giraudeau B, Boucaud A (2010) Efficiency of low-frequency ultrasound sonophoresis in skin penetration of histamine: a randomized study in humans. Int J Pharm 385:37–41PubMedCrossRefGoogle Scholar
  54. Maruani A, Vierron E, Machet L, Giraudeau B, Halimi JM, Boucaud A (2012) Tolerance of low-frequency ultrasound sonophoresis: a double-blind randomized study on humans. Skin Res Technol 18(2):151–156PubMedCrossRefGoogle Scholar
  55. McElnay JC, Matthews MP, Harland R, McCafferty DF (1985) The effect of ultrasound on the percutaneous absorption of lignocaine. Br J Clin Pharmacol 20(4):421–424PubMedPubMedCentralCrossRefGoogle Scholar
  56. McElnay JC, Kennedy TA, Harland R (1987) The influence of ultrasound on the percutaneous absorption of fluocinolone acetonide. Int J Pharm 40:105–110CrossRefGoogle Scholar
  57. Meidan VM, Docker MF, Walmsley AD, Irwin WJ (1998) Phonophoresis of hydrocortisone with enhancers: an acoustically defined model. Int J Pharm 170:157–168CrossRefGoogle Scholar
  58. Meltzer RS (1996) Food and Drug Administration ultrasound device regulation: the output display standard, the “mechanical index”, and ultrasound safety. J Am Soc Echocardiogr 9:216–220PubMedCrossRefGoogle Scholar
  59. Merino G, Kalia YN, Delgado-Charro MB, Potts RO, Guy RH (2003) Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J Control Release 88:85–94PubMedCrossRefGoogle Scholar
  60. Merritt CR, Kremkau FW, Hobbins JC (1992) Diagnostic ultrasound: bioeffects and safety. Ultrasound Obstet Gynecol 2:366–374PubMedCrossRefGoogle Scholar
  61. Mitragotri S (2000) Synergistic effect of enhancers for transdermal drug delivery. Pharm Res 17(11):1354–1359PubMedCrossRefGoogle Scholar
  62. Mitragotri S (2001) Effect of therapeutic ultrasound on partition and diffusion coefficients in human stratum corneum. J Control Release 71(1):23–29PubMedCrossRefGoogle Scholar
  63. Mitragotri S, Kost J (2000) Low frequency sonophoresis: a noninvasive method of drug delivery and diagnostics. Biotech Prog 16:488–492CrossRefGoogle Scholar
  64. Mitragotri S, Kost J (2001) Transdermal delivery of heparin and low-molecular weight heparin using low-frequency ultrasound. Pharm Res 18:1151–1156PubMedCrossRefGoogle Scholar
  65. Mitragotri S, Kost J (2004) Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 56(5):589–601PubMedCrossRefGoogle Scholar
  66. Mitragotri S, Edwards DA, Blankschtein D, Langer R (1995a) A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci 84(6):697–706PubMedCrossRefGoogle Scholar
  67. Mitragotri S, Blankschtein D, Langer R (1995b) Ultrasound-mediated transdermal protein delivery. Science 269(5225):850–853PubMedCrossRefGoogle Scholar
  68. Mitragotri S, Blankschtein D, Langer R (1996) Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 13(3):411–420PubMedCrossRefGoogle Scholar
  69. Mitragotri S, Ray D, Farrell J, Tang H, Yu B, Kost J, Blankschtein D, Langer R (2000a) Synergistic effect of ultrasound and sodium lauryl sulfate on transdermal drug delivery. J Pharm Sci 89:892–900PubMedCrossRefGoogle Scholar
  70. Mitragotri S, Coleman M, Kost J, Langer R (2000b) Transdermal extraction of analytes using low-frequency ultrasound. Pharm Res 17(4):466–470PubMedCrossRefGoogle Scholar
  71. Mitragotri S, Farrell J, Tang H, Terahara T, Kost J, Langer R (2000c) Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J Control Release 63(1-2):41–52PubMedCrossRefGoogle Scholar
  72. Mutalik S, Nayak UY, Kalra R, Kumar A, Kulkarni RV, Parekh HS (2012) Sonophoresis-mediated permeation and retention of peptide dendrimers across human epidermis. Skin Res Technol 18:101–107PubMedCrossRefGoogle Scholar
  73. Ngamratanapaiboon S, Iemsan-Arng J, Yambangyang P, Neatpisarnvanit C, Sirisoonthorn S, Sathirakul K (2012) In vitro study the transdermal permeation profiles of L-ascorbic acid in chitosan hydrogel formulation altered by sonophoresis. Adv J Pharma Sci 1:13–17Google Scholar
  74. Nightingale KR, Kornguth PJ, Trahey GE (1999) The use of acoustic streaming in breast lesion diagnosis: a clinical study. Ultrasound Med Biol 25:75–87PubMedCrossRefGoogle Scholar
  75. Nyborg WL (2001) Biological effects of ultrasound development of safety guidelines. Path II general reviews. Ultrasound Med Biol 27:301–333PubMedCrossRefGoogle Scholar
  76. Olefsky JM (2001) Prospects for research in diabetes mellitus. JAMA 285:628–632PubMedCrossRefGoogle Scholar
  77. Oliver N, Toumazou CT, Cass A, Johnston D (2008) Glucose sensors: a review of current and emerging technology. Diabet Med 26:197–210CrossRefGoogle Scholar
  78. Paix A, Coleman A, Lees J, Grigson J, Brooksbank M, Thorne D, Ashby M (1995) Subcutaneous fentanyl and sufentanil infusion substitution for morphine intolerance in cancer pain management. Pain 63(2):263–269PubMedCrossRefGoogle Scholar
  79. Paliwal S, Menon GK, Mitragotri S (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126(5):1095–1101PubMedCrossRefGoogle Scholar
  80. Park R, Jang K, Park S, Cho H, Jin C, Choi M, Chung S, Min B (2005) The effect of sonication on simulated osteoarthritis. Part I: effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium. Ultrasound Med Biol 31:1551–1558PubMedCrossRefGoogle Scholar
  81. Park EJ, Werner J, Smith NB (2007) Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm Res 24(7):1396–1401PubMedCrossRefGoogle Scholar
  82. Park D, Yoon J, Park J, Jung B, Park H, Seo J (2010) Transdermal drug delivery aided by an ultrasound contrast agent: an in vitro experimental study. Open Biomed Eng J 4:56–62PubMedPubMedCentralCrossRefGoogle Scholar
  83. Park D, Ryu H, Kim H, Kim Y, Choi K, Park H, Seo J (2012) Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study. Ultrasound Med Biol 38:642–650PubMedCrossRefGoogle Scholar
  84. Pecha R, Gompf B (2000) Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett 84:1328–1330PubMedCrossRefGoogle Scholar
  85. Pires-de-Campos MSM, Polacow MLO, Granzotto TM, Spadari-Bratfisch RC, Leonardi GR, Grassi-Kassisse DM (2007) Influence of the ultrasound in cutaneous permeation of the caffeine: in vitro study. Pharmacol Online 1:477–486Google Scholar
  86. Polat BE, Seto JE, Blankschtein D, Langer R (2011a) Application of the aqueous porous pathway model to quantify the effect of sodium lauryl sulfate on ultrasound-induced skin structural perturbation. J Pharm Sci 100:1387–1397PubMedCrossRefGoogle Scholar
  87. Polat BE, Figueroa PL, Blankschtein D, Langer R (2011b) Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate. J Pharm Sci 100(2):512–529PubMedCrossRefGoogle Scholar
  88. Popinet S, Zaleski S (2002) Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J Fluid Mech 464:137–163CrossRefGoogle Scholar
  89. Rosim GC, Barbieri CH, Lancas FM, Mazzer N (2005) Diclofenac phonophoresis in human volunteers. Ultrasound Med Biol 31:337–343PubMedCrossRefGoogle Scholar
  90. Sarheed O, Abdul Rasool BK (2011) Development of an optimized application protocol for sonophoretic transdermal delivery of a model hydrophilic drug. Open Biomed Eng J 5:14–24PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sarheed O, Frum Y (2012) Use of the skin sandwich technique to probe the role of the hair follicles in sonophoresis. Int J Pharm 423:179–183PubMedCrossRefGoogle Scholar
  92. Scheuplein RJ (1967) Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 1967(48):79–88CrossRefGoogle Scholar
  93. Scheuplein RJ, Blank IH, Brauner GJ, MacFarlane DJ (1969) Percutaneous absorption of steroids. J Invest Dermatol 52:63–70PubMedCrossRefGoogle Scholar
  94. Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162:1–16PubMedCrossRefGoogle Scholar
  95. Singer AJ, Homan CS, Church AL, McClain SA (1998) Low-frequency sonophoresis: pathologic and thermal effects in dogs. Acad Emerg Med 5(1):35–40PubMedCrossRefGoogle Scholar
  96. Smith NB (2007) Perspectives on transdermal ultrasound mediated drug delivery. Int J Nanomedicine 2(4):585–594PubMedPubMedCentralGoogle Scholar
  97. Smith NB, Lee S, Maione E, Roy RB, Mcelligott S, Shung KK (2003) Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs. Ultrasound Med Biol 29:311–317PubMedCrossRefGoogle Scholar
  98. Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260:80–86CrossRefGoogle Scholar
  99. Szabo TL (2004) Diagnostic ultrasound imaging: inside out. Elsevier, Amsterdam/BostonGoogle Scholar
  100. Tachibana K (1992) Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure. Pharm Res 9(7):952–954PubMedCrossRefGoogle Scholar
  101. Tachibana K, Tachibana S (1991) Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol 43(4):270–271PubMedCrossRefGoogle Scholar
  102. Tachibana K, Tachibana S (1993) Use of ultrasound to enhance the local anesthetic effect of topically applied aqueous lidocaine. Anesthesiology 78(6):1091–1096PubMedCrossRefGoogle Scholar
  103. Tang H, Wang CC, Blankschtein D, Langer R (2002) An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm Res 19(8):1160–1169PubMedCrossRefGoogle Scholar
  104. Terahara T, Mitragotri S, Kost J, Langer R (2002) Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Int J Pharm 235(1-2):35–42PubMedCrossRefGoogle Scholar
  105. Tezel A, Sens A, Tuchscherer J, Mitragotri S (2001) Frequency dependence of sonophoresis. Pharm Res 18(12):1694–1700PubMedCrossRefGoogle Scholar
  106. Tezel A, Sens A, Tuchscherer J, Mitragotri S (2002a) Synergistic effect of low-frequency ultrasound and surfactants on skin permeability. J Pharm Sci 91(1):91–100PubMedCrossRefGoogle Scholar
  107. Tezel A, Sens A, Mitragotri S (2002b) A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density. Pharm Res 19(12):1841–1846PubMedCrossRefGoogle Scholar
  108. Tezel A, Sens A, Mitragotri S (2003) Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. J Pharm Sci 92(2):381–393PubMedCrossRefGoogle Scholar
  109. Tezel A, Dokka S, Kelly S, Hardee GE, Mitragotri S (2004) Topical delivery of anti-sense nucleotides using low-frequency sonophoresis. Pharm Res 21:2219–2225PubMedCrossRefGoogle Scholar
  110. Tezel A, Paliwal S, Shen Z, Mitragotri S (2005) Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine 23(29):3800–3807PubMedCrossRefGoogle Scholar
  111. Tiwari SB, Pai RM, Udupa N (2000) Influence of ultrasound on the percutaneous absorption of ketorolac tromethamine in vitro across rat skin. Drug Deliv 11:447–451Google Scholar
  112. Ueda H, Mutoh M, Seki T, Kobayashi D, Morimoto Y (2009) Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol Pharm Bull 32(5):916–920PubMedCrossRefGoogle Scholar
  113. Wang Y, Thakur R, Fan Q, Michniak B (2005) Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery. Eur J Pharm Biopharm 60:179–191PubMedCrossRefGoogle Scholar
  114. Wolloch L, Kost J (2010) The importance of microjet vs shock wave formation in sonophoresis. J Control Release 148(2):204–211PubMedCrossRefGoogle Scholar
  115. Yang J, Kim D, Yun M, Kim T, Shin S (2006) Transdermal delivery system of triamcinolone acetonide from a gel using phonophoresis. Arch Pharm Res 29:412–417PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of DermatologyCHA Bundang Medical Center, CHA UniversitySeongnam-si, Gyeonggi-doKorea
  2. 2.Department of Biomedical EngineeringYonsei UniversityWonjuKorea
  3. 3.Department of DermatologyYonsei University College of MedicineSeoulKorea
  4. 4.Human Barrier Research InstituteYonsei University College of Medicine, Gangnam Severance Hospital 712 EonjuroGangnam-gu, SeoulKorea

Personalised recommendations