Skip to main content

Diagnose von Inkonsistenzen in heterogenen Engineeringdaten

  • Chapter
  • First Online:
Handbuch Industrie 4.0 Bd.2

Part of the book series: Springer Reference Technik ((VDISR))

  • 27k Accesses

Zusammenfassung

Industrie 4.0 bedeutet mehr Komplexitat – nicht zuletzt auch während des Engineerings automatisierter Produktionssysteme. Essenziell für den Erfolg von Industrie 4.0-Entwicklungsprojekten ist, dass Fehler während der Entwicklung frühzeitig erkannt und behoben werden. Solche Fehler manifestieren sich in vielen Fällen durch Inkonsistenzen in den Engineeringdaten, die oftmals sehr heterogener Natur sind. Zur Adressierung dieser Problematik analysiert dieses Kapitel die Herausforderung des Managements (d. h. der Erkennung und Behebung) von Inkonsistenzen in heterogenen Engineeringdaten und stellt einen Ansatz zur Diagnose von Inkonsistenzen vor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Basole R, Qamar A, Park H, Paredis C, McGinnis L (2015) Visual analytics for early-phase complex engineered system design support. IEEE Computer Graphics and Applications 35(2):41–51. doi:10.1109/MCG.2015.3

    Article  Google Scholar 

  • Bassi L, Secchi C, Bonfe M, Fantuzzi C (2011) A SysML-based methodology for manufacturing machinery modeling and design. IEEE/ASME Transactions on Mechatronics 16(6):1049–1062. doi:10.1109/TMECH.2010.2073480

    Article  Google Scholar 

  • Biffl S, Winkler D, Mordinyi R, Scheiber S, Holl G (2014) Efficient monitoring of multi-disciplinary engineering constraints with semantic data integration in the multi-model dashboard process. In: IEEE International Conference on Emerging Technology and Factory Automation, S 1–10. doi:10.1109/ETFA.2014.7005211

    Google Scholar 

  • Biffl S, Maetzler E, Wimmer M, Luder A, Schmidt N (2015) Linking and versioning support for automationml: a model-driven engineering perspective. In: IEEE International Conference on Industrial Informatics, S 499–506. doi:10.1109/INDIN.2015.7281784

    Google Scholar 

  • Bill R, Steyskal S, Wimmer M, Kappel G. (2014) On synergies between model transformations and semantic web technologies. In: International Conference on Model Driven Engineering Languages and Systems – workshop on multi-paradigm modeling, S 31–40. Valencia

    Google Scholar 

  • Brix T, Reeßing M (2009) Domain spanning design tools for heterogeneous systems. In: International Conference on Engineering Design, Palo Alto, US-CA

    Google Scholar 

  • Broy M, Feilkas M, Herrmannsdoerfer M, Merenda S, Ratiu D (2010) Seamless model-based development: from isolated tools to integrated model engineering environments. Proceedings of the IEEE 98(4):526–545. doi:10.1109/JPROC.2009.2037771

    Article  Google Scholar 

  • Deutsches Institut für Normung e.V. (2015) Datenaustauschformat für Planungsdaten industrieller Automatisierungssysteme – AutomationML – Teil 1: Architektur und allgemeine Festlegun gen

    Google Scholar 

  • Drath R (Hrsg) (2010) Datenaustausch in der Anlagenplanung mit AutomationML: Integrationvon CAEX, PLCopen XML und COLLADA. Springer

    Google Scholar 

  • Egyed A (2011) Automatically detecting and tracking inconsistencies in software design models. IEEE Transactions on Software Engineering 37(2):188–204. doi:10.1109/TSE.2010.38

    Article  Google Scholar 

  • Feldmann S, Kernschmidt K, Vogel-Heuser B (2014) Combining a SysML-based modeling approach and semantic technologies for analyzing change influences in manufacturing plant models. In: CIRP Conference on Manufacturing Systems, S 451–456. doi:10.1016/j.procir.2014.01.140

    Google Scholar 

  • Feldmann S, Herzig SJI, Kernschmidt K, Wolfenstetter T, Kammerl D, Qamar A, Lindemann U, Krcmar H, Paredis CJJ, Vogel-Heuser B (2015a) Towards effective management of inconsistencies in model-based engineering of automated production systems. In: IFAC Symposium on Information Control Problems in Manufacturing. doi:10.1016/j.ifacol.2015.06.200

    Google Scholar 

  • Feldmann S, Herzig SJI, Kernschmidt K, Wolfenstetter T, Kammerl D, Qamar A, Lindemann U, Krcmar H, Paredis CJJ, Vogel-Heuser B (2015b) A Comparison of Inconsistency Management Approaches Using a Mechatronic Manufacturing System Design Case Study. In: 10th IEEE International Conference on Automation Science and Engineering (CASE), Gotheburg, Sweden

    Google Scholar 

  • Finkelstein AC, Gabbay D, Hunter A, Kramer J, Nuseibeh B (1994) Inconsistency handling in multiperspective specifications. IEEE Transactions on Software Engingeering 20(8):569–578

    Article  Google Scholar 

  • Gausemeier J, Schäfer W, Greenyer J, Kahl S, Pook S, Rieke J (2009) Management of cross-domain model consistency during the development of advanced mechatronic systems. In: International Conference on Engineering Design, Palo Alto, US-CA

    Google Scholar 

  • Giese H, Wagner R (2009) From model transformation to incremental bidirectional model synchronization. Software and Systems Modeling 8(1):21–43. doi:10.1007/s10270-008-0089-9

    Article  Google Scholar 

  • Hamraz B, Caldwell NHM, Clarkson PJ (2013) A holistic categorization framework for literature on engineering change management. Systems Engineering 16(4):473–505. doi:10.1002/sys.21244

    Article  Google Scholar 

  • Hegedus A, Horvath A, Rath I, Branco M, Varro D (2011) Quick fix generation for DSMLs. In: IEEE symposium on visual languages and human-centric computing, S 17–24. doi:10.1109/VLHCC.2011.6070373

    Google Scholar 

  • Hehenberger P, Egyed A, Zeman K (2007) Consistency checking of mechatronic design models. In: ASME international design engineering technical conferences and computers and information in engineering conference. doi:10.1115/DETC2010–28615

    Google Scholar 

  • Herzig SJI, Paredis CJJ (2014) Bayesian reasoning over models. In: Workshop model-driven Eng., verification, and validation

    Google Scholar 

  • Herzig SJ, Qamar A, Paredis CJ (2014) An approach to identifying inconsistencies in model-based systems engineering. In: Conference on Systems Engineeirng Research 28:354–362. doi:10.1016/j.procs.2014.03.044

    Google Scholar 

  • Isermann R (2008) Mechatronic systems – innovative products with embedded control. Control Eng Practice 16(1):14–29

    Article  Google Scholar 

  • Kernschmidt K, Vogel-Heuser B (2013) An interdisciplinary SysML based modeling approach for analyzing change influences in production plants to support the engineering. In: IEEE International Conference on Automation Science and Engineering, S 1113–1118. doi:10.1109/CoASE.2013.6654030

    Google Scholar 

  • Kovalenko O, Serral E, Sabou M, Ekaputra FJ, Winkler D, Biffl S (2014) Automating cross-disciplinary defect detection in multi-disciplinary engineering environments. In: Janowicz K, Schlobach S, Lambrix P, Hyvönen E (Hrsg) Knowledge engineering and knowledge management. Lecture notes in computer science, Bd 8876. Springer, S 238–249

    Google Scholar 

  • Lin HY, Sierla S, Papakonstantinou N, Shalyto A, Vyatkin V (2015) Change request management in model-driven engineering of industrial automation software. In: IEEE International Conference on Industrial Informatics, S 1186–1191. doi:10.1109/INDIN.2015.7281904

    Google Scholar 

  • Mens T, Van Der Straeten R, D’Hondt M (2006) Detecting and resolving model inconsistencies using transformation dependency analysis. In: Model driven engineering languages and systems. Lecture notes in computer science, Bd 4199. Springer, S 200–214. doi:10.1007/11880240_15

    Google Scholar 

  • Moser T, Biffl S (2012) Semantic Integration of Software and Systems Engineering Environments. IEEE Transactions on Systems, Man and Cybernetics – Part C 42(1):38–50. doi:10.1109/TSMCC.2011.2136377

    Article  Google Scholar 

  • NASA: Report on Project Management in NASA: Phase II of the Mars Climate Orbiter Mishap Report (2000). ftp://ftp.hq.nasa.gov/pub/pao/reports/2000MCOJMIB_Report.pdf. Zugegriffen am 26.01.2016

  • Nuseibeh B, Easterbrook S, Russo A (2000) Leveraging inconsistency in software development. Computer 33(4):24–29. doi:10.1109/2.839317

    Article  Google Scholar 

  • OMG: Systems Modeling Language (SysML), Version 1.3 (2012). http://www.omg.org/spec/SysML/1.3. Zugegriffen am 26.01.2016

  • OMG: Unified Modeling Language (UML), Version 2.4.1 (2011). http://www.omg.org/spec/UML/2.4.1/. Zugegriffen am 26.01.2016

  • Rieke J, Dorociak R, Sudmann O, Gausemeier J, Schäfer W (2012) Management of cross-domain model consistency for behavioral models of mechatronic systems. In: International Design Conference

    Google Scholar 

  • Rohloff K, Dean M, Emmons I, Ryder D, Sumner J (2007) An evaluation of triple-store technologies for large data stores. In: OTM Confederated International Conference on On the Moveto Meaningful Internet Systems, S 1105–1114

    Google Scholar 

  • Schäfer W, Wehrheim H (2010) Model-driven development with mechatronic UML. In: Engels G, Lewerentz C, Schäfer W, Schürr A, Westfechtel B (Hrsg) Graph transformations and model-driven engineering, Lecture notes in computer science, Bd 5765. Springer, S 533–554. Doi:10.1007/978-3-642-17322-6_23

    Google Scholar 

  • Schätz B, Braun P, Huber F, Wisspeintner A (2003) Consistency in model-based development. In: IEEE international conference and workshop on the engineering of computer-based systems, S 287–296. doi:10.1109/ECBS.2003.1194810

    Google Scholar 

  • Secchi C, Bonfe M, Fantuzzi C (2007) On the Use of UML for Modeling Mechatronic Systems. IEEE Transactions on Automation Science and Engineering 4(1):105–113. doi:10.1109/TASE.2006.879686

    Article  Google Scholar 

  • Spanoudakis G, Zisman A (2001) Inconsistency management in software engineering: Survey and open research issues. In: Chang SK (Hrsg) Handbook of software engineering and knowledge engineering. World Scientific, Singapore, S 329–380

    Chapter  Google Scholar 

  • Thramboulidis K (2013) Overcoming mechatronic design challenges: the 3 + 1 SysML-view model. J Comput Sci Techn 1(1):6–14

    Google Scholar 

  • Van Der Straeten R, D’Hondt M (2006) Model refactorings through rule-based inconsistency resolution. In: ACM Symposium on Applied Computing, S 1210–1217. doi:10.1145/1141277.1141564

    Google Scholar 

  • Vogel-Heuser B, Legat C, Folmer J, Feldmann S (2014) Researching evolution in industrial plant automation: scenarios and documentation of the pick and place. Unit. Tech. Rep. TUM-AIS-TR-01-14-02, Technische Universitat München. https://mediatum.ub.tum.de/node?id=1208973. Zugegriffen am 26.01.2016

  • Vogel-Heuser B, Legat C, Folmer J, Rosch S (2014b) Challenges of Parallel Evolution in Production Automation Focusing on Requirements Specification and Fault Handling. at – Automatisierungstechnik 62(11):758–770

    Google Scholar 

  • W3C: Resource Description Framework (RDF) (2014). http://www.w3.org/RDF/. Zugegriffen am 26.01.2016

  • W3C: SPARQL Protocol and RDF Query Language 1.1 overview (2013). http://www.w3.org/TR/sparql11-overview/. Zugegriffen am 26.01.2016

Download references

Danksagung

Die Autoren danken der Deutschen Forschungsgemeinschaft (DFG) für die Förderung dieser Arbeit als Teil des Sonderforschungsbereichs 768: Zyklenmanagement von Innovationsprozessen – verzahnte Entwicklung von Leistungsbündeln auf Basis technischer Produkte (SFB 768). Des Weiteren danken die Autoren Christiaan J.J. Paredis, Sebastian J.I. Herzig und Ahsan Qamar (Georgia Institute of Technology) für ihre Unterstützung und fruchtbaren Diskussionen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Feldmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Feldmann, S., Vogel-Heuser, B. (2017). Diagnose von Inkonsistenzen in heterogenen Engineeringdaten. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds) Handbuch Industrie 4.0 Bd.2. Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53248-5_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53248-5_91

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53247-8

  • Online ISBN: 978-3-662-53248-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics