Skip to main content

Structures and Properties of Helicenes

  • Chapter
  • First Online:
Helicene Chemistry

Abstract

Structural features of helicenes are briefly introduced, and the crystal structures of several helicenes and heterohelicenes are then discussed. Since helicenes are a kind of polycyclic aromatic hydrocarbons with helical chirality, they exhibit specific physical properties and optical properties, especially the excellent luminescent properties. For example, some helicenes display high fluorescence quantum yields in both solution and solid states. The unique helicity of helicenes also makes them show high specific optical rotation, electronic circularly dichroism, and vibrational circular dichroism. Besides, the determination of absolute configuration of optically pure helicenes and the thermal racemization of helicenes are further discussed. Three empirical rules are proposed for the hinderance of racemization. In addition, other related properties of helicenes including the solubility, basicity of azahelicenes, elasticity of thiahelicenes are also introduced. Finally, the preparation and properties of helicenes with charges and open shells, such as radical anions, radical cations, and helicene cations are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen Y, Chen C-F (2012) Helicenes: synthesis and applications. Chem Rev 112(3):1463–1535

    Article  CAS  Google Scholar 

  2. Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed 5(4):385–415

    Article  CAS  Google Scholar 

  3. Meurer KP, Vogtle F (1985) Helical molecules in organic-chemistry. Top Curr Chem 127:1–76

    Article  CAS  Google Scholar 

  4. Wynberg H (1971) Some observations on chemical, photochemical, and spectral properties of thiophenes. Acc Chem Res 4(2):65–73

    Article  CAS  Google Scholar 

  5. Lightner DA, Hefelfin DT, Frank GW, Powers TW, Truebloo KN (1971) Absolute configuration of hexahelicene. Nature-Phys Sci 232(32):124–125

    Google Scholar 

  6. Hirshfeld FL, Sandler S, Schmidt GMJ (1963) 398. The structure of overcrowded aromatic compounds. Part VI. The crystal structure of benzo[c]phenanthrene and of 1,12-dimethylbenzo[c]phenanthrene. J Chem Soc (Resumed) (0):2108–2125

    Google Scholar 

  7. Kuroda R (1982) Crystal and molecular structure of [5]helicene: crystal packing modes. J Chem Soc, Perkin Trans 2(7):789–794

    Article  Google Scholar 

  8. Yamamoto K, Okazumi M, Suemune H, Usui K (2013) Synthesis of [5]helicenes with a substituent exclusively on the interior side of the helix by metal-catalyzed cycloisomerization. Org Lett 15(8):1806–1809

    Article  CAS  Google Scholar 

  9. Misek J, Teply F, Stara IG, Tichy M, Saman D, Cisarova I, Vojtisek P, Stary I (2008) A straightforward route to helically chiral N-heteroaromatic compounds: practical synthesis of racemic 1,14-diaza[5]helicene and optically pure 1-and 2-aza[6]helicenes. Angew Chem Int Ed 47(17):3188–3191

    Article  CAS  Google Scholar 

  10. Takenaka N, Sarangthem RS, Captain B (2008) Helical chiral pyridine n-oxides: a new family of asymmetric catalysts. Angew Chem Int Ed 47(50):9708–9710

    Article  CAS  Google Scholar 

  11. Mori K, Murase T, Fujita M (2015) One-step synthesis of [16]helicene. Angew Chem Int Ed 54(23):6847–6851

    Article  CAS  Google Scholar 

  12. Laarhoven WH, Prinsen WJC (1984) Carbohelicenes and Heterohelicenes. Top Curr Chem 125:63–130

    Article  CAS  Google Scholar 

  13. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc, Perkin Trans 2(12):S1–S19

    Google Scholar 

  14. Wolstenholme DJ, Matta CF, Cameront TS (2007) Experimental and theoretical electron density study of a highly twisted polycyclic aromatic hydrocarbon: 4-methyl-[4]helicene. J Phys Chem A 111(36):8803–8813

    Article  CAS  Google Scholar 

  15. Obenland S, Schmidt W (1975) Photoelectron-spectra of polynuclear aromatics. 4. Helicenes. J Am Chem Soc 97(23):6633–6638

    Article  CAS  Google Scholar 

  16. Deb BM, Kavu G (1980) An indo-mo study of the spectral properties and trans-annular interaction in [6]-helicene. Can J Chem Rev Can Chim 58(3):258–262

    Article  CAS  Google Scholar 

  17. Schulman JM, Disch RL (1999) Aromatic character of [n]helicenes and [n]phenacenes. J Phys Chem A 103(33):6669–6672

    Article  CAS  Google Scholar 

  18. Portella G, Poater J, Bofill JM, Alemany P, Sola M (2005) Local aromaticity of [n]acenes, [n]phenacenes, and [n]helicenes (n = 1–9). J Org Chem 70(7):2509–2521

    Article  CAS  Google Scholar 

  19. Tian YH, Park G, Kertesz M (2008) Electronic structure of helicenes, C2S helicenes, and thiaheterohelicenes. Chem Mater 20(10):3266–3277

    Article  CAS  Google Scholar 

  20. Rajca A, Pink M, Xiao SZ, Miyasaka M, Rajca S, Das K, Plessel K (2009) Functionalized thiophene-based [7]helicene: chirooptical properties versus electron delocalization. J Org Chem 74(19):7504–7513

    Article  CAS  Google Scholar 

  21. Miyasaka M, Pink M, Olankitwanit A, Rajca S, Rajca A (2012) Band gap of carbon-sulfur [n]helicenes. Org Lett 14(12):3076–3079

    Article  CAS  Google Scholar 

  22. Johnson WS, Woroch E, Mathews FJ (1947) Cyclization studies in the benzoquinoline and naphthoquinoline series. II. J Am Chem Soc 69(3):566–571

    Article  CAS  Google Scholar 

  23. Clar E, Stewart DG (1952) Aromatic hydrocarbons. LXIII. Resonance restriction and the absorption spectra of aromatic hydrocarbons1. J Am Chem Soc 74(24):6235–6238

    Article  CAS  Google Scholar 

  24. Newman MS, Lednicer D (1956) The synthesis and resolution of hexahelicene. J Am Chem Soc 78(18):4765–4770

    Article  CAS  Google Scholar 

  25. Flammang-Barbieux M, Nasielski J, Martin RH (1967) Synthesis of heptahelicene (1) benzo[c] phenanthro [4, 3-g ]phenanthrene. Tetrahedron Lett 8(8):743–744

    Article  Google Scholar 

  26. Martin RH, Flammang M, Cosyn JP, Gelbcke M (1968) 1. Synthesis of octa- and nonahelicenes. 2. New syntheses of hexa- and heptahelicences. 3. Optical rotation and ORD of heptahelicene. Tetrahedron Lett (31):3507–3510

    Google Scholar 

  27. Bédard A-C, Vlassova A, Hernandez-Perez AC, Bessette A, Hanan GS, Heuft MA, Collins SK (2013) Synthesis, crystal structure and photophysical properties of pyrene-helicene hybrids. Chem Eur J 19(48):16295–16302

    Article  Google Scholar 

  28. Hu J-Y, Paudel A, Seto N, Feng X, Era M, Matsumoto T, Tanaka J, Elsegood MRJ, Redshaw C, Yamato T (2013) Pyrene-cored blue-light emitting [4]helicenes: synthesis, crystal structures, and photophysical properties. Org Biomol Chem 11(13):2186–2197

    Article  CAS  Google Scholar 

  29. Buchta M, Rybáček J, Jančařík A, Kudale AA, Buděšínský M, Chocholoušová JV, Vacek J, Bednárová L, Císařová I, Bodwell GJ, Starý I, Stará IG (2015) Chimerical pyrene-based [7]helicenes as twisted polycondensed aromatics. Chem Eur J 21(24):8910–8917

    Article  CAS  Google Scholar 

  30. Fujikawa T, Segawa Y, Itami K (2015) Synthesis, structures, and properties of π-extended double helicene: a combination of planar and nonplanar π-systems. J Am Chem Soc 137(24):7763–7768

    Article  CAS  Google Scholar 

  31. Dougherty KJ, Kraml CM, Byrne N, Porras JA, Bernhard S, Mague JT, Pascal RA Jr (2015) Helical mesobenzanthrones: a class of highly luminescent helicenes. Tetrahedron 71(11):1694–1699

    Article  CAS  Google Scholar 

  32. Bock H, Subervie D, Mathey P, Pradhan A, Sarkar P, Dechambenoit P, Hillard EA, Durola F (2014) Helicenes from Diarylmaleimides. Org Lett 16(6):1546–1549

    Article  CAS  Google Scholar 

  33. Li Y-Y, Lu H-Y, Li M, Li X-J, Chen C-F (2014) Dihydroindeno[2,1-c]fluorene-based imide dyes: synthesis, structures, photophysical and electrochemical properties. J Org Chem 79(5):2139–2147

    Article  CAS  Google Scholar 

  34. Fix AG, Deal PE, Vonnegut CL, Rose BD, Zakharov LN, Haley MM (2013) Indeno[2,1-c]fluorene: a new electron-accepting scaffold for organic electronics. Org Lett 15(6):1362–1365

    Article  CAS  Google Scholar 

  35. Li M, Niu Y, Zhu X, Peng Q, Lu H-Y, Xia A, Chen C-F (2014) Tetrahydro[5]helicene-based imide dyes with intense fluorescence in both solution and solid state. Chem Commun (Camb) 50(23):2993–2995

    Article  CAS  Google Scholar 

  36. Kitamura C, Tanigawa Y, Kobayashi T, Naito H, Kurata H, Kawase T (2012) 17,17-Dialkyltetrabenzo[a, c, g, i]fluorenes with extremely high solid-state fluorescent quantum yields: relationship between crystal structure and fluorescent properties. Tetrahedron 68(6):1688–1694

    Article  CAS  Google Scholar 

  37. Newman MS, Lutz WB, Lednicer D (1955) A new reagent for resolution by complex formation—the resolution of phenanthro-[3,4-C]phenanthrene. J Am Chem Soc 77(12):3420–3421

    Article  CAS  Google Scholar 

  38. Tanaka H, Nakagawa H, Yamada K, Kawazura H (1981) An NMR-study on the association stabilities of thiaheterohelicenes against 7,7,8,8-tetracyanoquinodimethan—effect of the staggered configuration of helicene. Bull Chem Soc Jpn 54(12):3665–3668

    Article  CAS  Google Scholar 

  39. Balan A, Gottlieb HE (1981) Diastereoisomeric charge-transfer complexes—measurement of thermodynamic constants by H-1 nuclear magnetic-resonance spectroscopy. J Chem Soc, Perkin Trans 2(2):350–352

    Article  Google Scholar 

  40. Mikes F, Boshart G, Gilav E (1976) Resolution of optical isomers by high-performance liquid-chromatography, using coated and bonded chiral charge-transfer complexing agents as stationary phases. J Chromatogr 122:205–221

    Article  CAS  Google Scholar 

  41. Mikes F, Boshart G, Gil-Av E (1976) Helicenes—resolution on chiral charge-transfer complexing agents using high-performance liquid-chromatography. J Chem Soc, Chem Commun 3:99–100

    Article  Google Scholar 

  42. Ermer O, Neudörfl J (2001) Comparative supramolecular chemistry of coronene and hexahelicene: helix alignment in crystalline complexes with trimesic acid (=benzene-1,3,5-tricarboxylic Acid) and π-acceptor compounds. Helv Chim Acta 84(6):1268–1313

    Article  CAS  Google Scholar 

  43. Kumano D, Iwahana S, Iida H, Shen C, Crassous J, Yashima E (2015) Enantioseparation on riboflavin derivatives chemically bonded to silica gel as chiral stationary phases for HPLC. Chirality 27(8):507–517

    Article  CAS  Google Scholar 

  44. Waghray D, Zhang J, Jacobs J, Nulens W, Basarić N, Meervelt LV, Dehaen W (2012) Synthesis and structural elucidation of diversely functionalized 5,10-diaza[5]helicenes. J Org Chem 77(22):10176–10183

    Article  CAS  Google Scholar 

  45. Nakano K, Oyama H, Nishimura Y, Nakasako S, Nozaki K (2012) λ5-Phospha[7]helicenes: synthesis, properties, and columnar aggregation with one-way chirality. Angew Chem Int Ed 51(3):695–699

    Article  CAS  Google Scholar 

  46. Martin RH (1974) Helicenes. Angew Chem Int Ed Engl 13(10):649–659

    Article  Google Scholar 

  47. Gingras M, Felix G, Peresutti R (2013) One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of carbohelicenes. Chem Soc Rev 42(3):1007–1050

    Article  CAS  Google Scholar 

  48. Goedicke C, Stegemeyer H (1970) Resolution and racemization of pentahelicene. Tetrahedron Lett 11(12):937–940

    Article  Google Scholar 

  49. Martin RH, Marchant MJ (1974) Resolution and optical-properties ([alpha]max, ORD and CD) of hepta-helicene, octa-helicene and nonahelicene. Tetrahedron 30(2):343–345

    Article  CAS  Google Scholar 

  50. Nakai Y, Mori T, Inoue Y (2012) Theoretical and experimental studies on circular dichroism of carbo[n]helicenes. J Phys Chem A 116(27):7372–7385

    Article  CAS  Google Scholar 

  51. Srebro M, Autschbach J (2012) Tuned range-separated time-dependent density functional theory applied to optical rotation. J Chem Theory Comput 8(1):245–256

    Article  CAS  Google Scholar 

  52. Nakai Y, Mori T, Inoue Y (2013) Circular dichroism of (di)methyl- and diaza[6]helicenes. A combined theoretical and experimental study. J Phys Chem A 117(1):83–93

    Article  CAS  Google Scholar 

  53. Nakai Y, Mori T, Sato K, Inoue Y (2013) Theoretical and experimental studies of circular dichroism of mono- and diazonia[6]helicenes. J Phys Chem A 117(24):5082–5092

    Article  CAS  Google Scholar 

  54. Burgi T, Urakawa A, Behzadi B, Ernst K-H, Baiker A (2004) The absolute configuration of heptahelicene: aVCD spectroscopy study. New J Chem 28(3):332–334

    Article  Google Scholar 

  55. Johannessen C, Blanch EW, Villani C, Abbate S, Longhi G, Agarwal NR, Tommasini M, Lightner DA (2013) Raman and ROA Spectra of (−)- and (+)-2-Br-hexahelicene: experimental and DFT studies of a π-conjugated chiral system. J Phys Chem B 117(7):2221–2230

    Article  CAS  Google Scholar 

  56. Shen Y, Lu H-Y, Chen C-F (2014) Dioxygen-triggered transannular dearomatization of benzo[5]helicene diols: highly efficient synthesis of chiral π-extended diones. Angew Chem Int Ed 53(18):4648–4651

    Article  CAS  Google Scholar 

  57. Grimme S, Peyerimhoff SD (1996) Theoretical study of the structures and racemization barriers of [n]helicenes (n = 3–6, 8). Chem Phys 204(2–3):411–417

    Article  CAS  Google Scholar 

  58. Janke RH, Haufe G, Wurthwein EU, Borkent JH (1996) Racemization barriers of helicenes: A computational study. J Am Chem Soc 118(25):6031–6035

    Article  CAS  Google Scholar 

  59. Lindner HJ (1975) Atomisierungsenergien gespannter konjugierter kohlenwasserstoffe—I: Razemisierungsenergien von helicenen. Tetrahedron 31(3):281–284

    Article  CAS  Google Scholar 

  60. Severa L, Ončák M, Koval D, Pohl R, Šaman D, Císařová I, Reyes-Gutiérrez PE, Sázelová P, Kašička V, Teplý F, Slavíček P (2012) A chiral dicationic [8]circulenoid: photochemical origin and facile thermal conversion into a helicene congener. Angew Chem Int Ed 51(48):11972–11976

    Article  CAS  Google Scholar 

  61. Vacek Chocholoušová J, Vacek J, Andronova A, Míšek J, Songis O, Šámal M, Stará IG, Meyer M, Bourdillon M, Pospíšil L, Starý I (2014) On the physicochemical properties of pyridohelicenes. Chem Eur J 20(3):877–893

    Article  Google Scholar 

  62. Scherübl H, Fritzsche U, Mannschreck A (1984) Liquid chromatography on triacetylcellulose, 6. Synthesis, chromatographic enrichment of enantiomers, and barriers to enantiomerization of helical phenanthrenes. Chem Ber 117(1):336–343

    Article  Google Scholar 

  63. Martin RH, Marchant MJ (1974) Thermal racemization of hepta-helicene, octa-helicene, and nonahelicene—kinetic results, reaction path and experimental proofs that racemization of hexahelicene and heptahelicene does not involve an intramolecular double diels-alder reaction. Tetrahedron 30(2):347–349

    Article  CAS  Google Scholar 

  64. Borkent JH, Laarhoven WH (1978) Thermal racemization of methyl-substituted hexahelicenes. Tetrahedron 34(16):2565–2567

    Article  CAS  Google Scholar 

  65. Wynberg H, Groen MB (1969) Racemization of two hexaheterohelicenes. J Chem Soc D: Chem Commun 17:964–965

    Article  Google Scholar 

  66. Caronna T, Mele A, Famulari A, Mendola D, Fontana F, Juza M, Kamuf M, Zawatzky K, Trapp O (2015) A combined experimental and theoretical study on the stereodynamics of monoaza[5]helicenes: solvent-induced increase of the enantiomerization barrier in 1-aza-[5]helicene. Chem Eur J 21(40):13919–13924

    Article  CAS  Google Scholar 

  67. Katz TJ, Liu LB, Willmore ND, Fox JM, Rheingold AL, Shi SH, Nuckolls C, Rickman BH (1997) An efficient synthesis of functionalized helicenes. J Am Chem Soc 119(42):10054–10063

    Article  CAS  Google Scholar 

  68. Zirnstein MA, Staab HA (1987) Quino[7,8-h]quinoline, a new type of “proton sponge”. Angew Chem Int Ed Engl 26(5):460–461

    Article  Google Scholar 

  69. Staab HA, Diehm M, Krieger C (1994) Synthesis, structure and basicity of 1,16-diaza[6]helicene. Tetrahedron Lett 35(45):8357–8360

    Article  CAS  Google Scholar 

  70. Osuga H, Tanaka K (2002) Synthesis and properties of heterohelicenes as “molecular springs”. J Synth Org Chem Jpn 60(6):593–603

    Article  CAS  Google Scholar 

  71. Jalaie M, Weatherhead S, Lipkowitz KB, Robertson D (1997) Modulating force constants in molecular springs. Electronic J Theo Chem 2(1):268–272

    Article  CAS  Google Scholar 

  72. Rulisek L, Exner O, Cwiklik L, Jungwirth P, Stary I, Pospisil L, Havlas Z (2007) On the convergence of the physicochemical properties of [n]helicenes. J Phys Chem C 111(41):14948–14955

    Article  CAS  Google Scholar 

  73. Sestak P, Wu J, He J, Pokluda J, Zhang Z (2015) Extraordinary deformation capacity of smallest carbohelicene springs. Phys Chem Chem Phys 17(28):18684–18690

    Article  CAS  Google Scholar 

  74. Vacek J, Chocholousova JV, Stara IG, Stary I, Dubi Y (2015) Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale 7(19):8793–8802

    Article  CAS  Google Scholar 

  75. Guo Y-D, Yan X-H, Xiao Y, Liu C-S (2015) U-shaped relationship between current and pitch in helicene molecules. Sci Rep 5:16731

    Article  CAS  Google Scholar 

  76. Fey HJ, Kurreck H, Lubitz W (1979) Endor studies of [6]helicene anion radical. Tetrahedron 35(7):905–907

    Article  CAS  Google Scholar 

  77. Yang BW, Liu LB, Katz TJ, Liberko CA, Miller LL (1991) Electron delocalization in helical quinone anion radicals. J Am Chem Soc 113(23):8993–8994

    Article  CAS  Google Scholar 

  78. Liberko CA, Miller LL, Katz TJ, Liu LB (1993) The electronic-structure of helicene bisquinone anion radicals. J Am Chem Soc 115(6):2478–2482

    Article  CAS  Google Scholar 

  79. Sargent AL, Almlof J, Liberko CA (1994) Electron delocalization in helical bis(quinone) anion-radicals. J Phys Chem 98(24):6114–6117

    Article  CAS  Google Scholar 

  80. Zak JK, Miyasaka M, Rajca S, Lapkowski M, Rajca A (2010) Radical cation of helical, cross-conjugated beta-oligothiophene. J Am Chem Soc 132(10):3246–3247

    Article  CAS  Google Scholar 

  81. Arai S, Ishikura M, Yamagishi T (1998) Synthesis of polycyclic azonia-aromatic compounds by photo-induced intramolecular quaternization: Azonia derivatives of benzo[c]phenanthrene, [5]helicene and [6]helicene. J Chem Soc, Perkin Trans 1(9):1561–1567

    Article  Google Scholar 

  82. Sato K, Yamagishi T, Arai S (2000) Synthesis of novel azonia[5]helicenes containing terminal thiophene rings. J Heterocycl Chem 37(4):1009–1014

    Article  CAS  Google Scholar 

  83. Adriaenssens L, Severa L, Salova T, Cisarova I, Pohl R, Saman D, Rocha SV, Finney NS, Pospisil L, Slavicek P, Teply F (2009) Helquats: a facile, modular, scalable route to novel helical dications. Chem Eur J 15(5):1072–1076

    Article  CAS  Google Scholar 

  84. Vávra J, Severa L, Švec P, Císařová I, Koval D, Sázelová P, Kašička V, Teplý F (2012) Preferential crystallization of a helicene-viologen hybrid—an efficient method to resolve [5]helquat enantiomers on a 20 g scale. Eur J Org Chem 3:489–499

    Article  Google Scholar 

  85. Vávra J, Severa L, Císařová I, Klepetářová B, Šaman D, Koval D, Kašička V, Teplý F (2013) Search for conglomerate in set of [7]helquat salts: multigram resolution of helicene-viologen hybrid by preferential crystallization. J Org Chem 78(4):1329–1342

    Article  Google Scholar 

  86. Bosson J, Gouin J, Lacour J (2014) Cationic triangulenes and helicenes: synthesis, chemical stability, optical properties and extended applications of these unusual dyes. Chem Soc Rev 43(8):2824–2840

    Article  CAS  Google Scholar 

  87. Torricelli F, Bosson J, Besnard C, Chekini M, Bürgi T, Lacour J (2013) Modular synthesis, orthogonal post-functionalization, absorption, and chiroptical properties of cationic [6]helicenes. Angew Chem Int Ed 52(6):1796–1800

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Feng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, CF., Shen, Y. (2017). Structures and Properties of Helicenes. In: Helicene Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53168-6_2

Download citation

Publish with us

Policies and ethics