Aperiodic String Transducers

  • Luc Dartois
  • Ismaël Jecker
  • Pierre-Alain Reynier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9840)


Regular string-to-string functions enjoy a nice triple characterization through deterministic two-way transducers (\(\mathrm {2DFT}\)), streaming string transducers (\(\mathrm {SST}\)) and \(\mathrm {MSO}\) definable functions. This result has recently been lifted to \(\mathrm {FO}\) definable functions, with equivalent representations by means of aperiodic \(\mathrm {2DFT}\) and aperiodic 1-bounded \(\mathrm {SST}\), extending a well-known result on regular languages. In this paper, we give three direct transformations: (i) from 1-bounded \(\mathrm {SST}\) to \(\mathrm {2DFT}\), (ii) from \(\mathrm {2DFT}\) to copyless \(\mathrm {SST}\), and (iii) from k-bounded to 1-bounded \(\mathrm {SST}\). We give the complexity of each construction and also prove that they preserve the aperiodicity of transducers. As corollaries, we obtain that \(\mathrm {FO}\) definable string-to-string functions are equivalent to \(\mathrm {SST}\) whose transition monoid is finite and aperiodic, and to aperiodic copyless \(\mathrm {SST}\).


Transducer Streaming Two-way Monoid Aperiodic 


  1. 1.
    Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: FSTTCS. LIPIcs, vol. 8, pp. 1–12. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2010)Google Scholar
  2. 2.
    Alur, R., Durand-Gasselin, A., Trivedi, A.: From monadic second-order definable string transformations to transducers. In: LICS, pp. 458–467 (2013)Google Scholar
  3. 3.
    Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In: LICS, pp. 65–74 (2012)Google Scholar
  4. 4.
    Carton, O., Dartois, L.: Aperiodic two-way transducers and fo-transductions. In: CSL. LIPIcs, vol. 41, pp. 160–174. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2015)Google Scholar
  5. 5.
    Chytil, M.P., Jákl, V.: Serial composition of 2-way finite-state transducers and simple programs on strings. In: Salomaa, A., Steinby, M. (eds.) ICALP 1977. LNCS, vol. 52, pp. 135–137. Springer, Heidelberg (1977)CrossRefGoogle Scholar
  6. 6.
    Dartois, L.: Méthodes algébriques pour la théorie des automates. Ph.D. thesis, LIAFA-Université Paris Diderot, Paris (2014)Google Scholar
  7. 7.
    Dartois, L., Jecker, I., Reynier, P.A.: Aperiodic string transducers. CoRR abs/1506.04059 (2016). http://arXiv.org/abs/1506.04059
  8. 8.
    Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Filiot, E.: Logic-automata connections for transformations. In: Banerjee, M., Krishna, S.N. (eds.) ICLA. LNCS, vol. 8923, pp. 30–57. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Filiot, E., Gauwin, O., Reynier, P.A., Servais, F.: From two-way to one-way finite state transducers. In: LICS, pp. 468–477. IEEE Computer Society (2013). lics13.pdfGoogle Scholar
  11. 11.
    Filiot, E., Krishna, S.N., Trivedi, A.: First-order definable string transformations. In: FSTTCS 2014. LIPIcs, vol. 29, pp. 147–159. Schloss Dagstuhl, Leibniz-Zentrum für InformatikGoogle Scholar
  12. 12.
    McNaughton, R., Papert, S.: Counter-Free Automata. The M.I.T. Press, Cambridge, London (1971)MATHGoogle Scholar
  13. 13.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    de Souza, R.: Uniformisation of two-way transducers. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 547–558. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Luc Dartois
    • 1
  • Ismaël Jecker
    • 1
  • Pierre-Alain Reynier
    • 2
  1. 1.Université Libre de BruxellesBrusselBelgium
  2. 2.Aix-Marseille Université, CNRS, LIF UMR 7279MarseilleFrance

Personalised recommendations