Skip to main content

An Isolator: Dynamics and Vibration Isolation

  • Chapter
  • First Online:
  • 751 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

As an application of the SD oscillator, in this chapter, a nonlinear isolator based on a spring-mass system with a single degree of freedom is proposed, which can be designed as a nonlinear supporting system for ground vibration tests (GVT) for large scale machines like aircrafts and for vibration isolation due to a stable quasi-zero-stiffness (SQZS). The SQZS structure is constructed with a mass supported by a vertical spring component to support the weight of the mass and a pair of horizontal linear springs providing an equal vertical negative stiffness. This is typical of an irrational restoring force due to the geometrical configuration. The unperturbed dynamics is studied with the equilibrium bifurcations. A parameter optimization is used to obtain SQZS over the maximum interval of low frequency isolation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This chapter relies on a common work with Dr. Zhifeng Hao, Centre for Nonlinear Dynamics Research, School of Astronautics, Harbin Institute of Technology, Harbin 150001 China.

References

  1. Molyneux, W. G. (1957). Supports for vibration isolation. ARC/C-322. London: Aeronautical Research Counci.

    Google Scholar 

  2. Lorrain, P. (1974). Low natural frequency vibration isolator or seismograph. Review of Science Instrument, 4(5), 198–202.

    Article  Google Scholar 

  3. Denoyer, K., & Johnson, C. (2001). Recent achievements in vibration isolation systems for space launch and on-orbit applications. In 52nd Int Astronautics Congress, Toulouse, France.

    Google Scholar 

  4. Winterflood, J. (2001). High performance vibration isolation for gravitational wave detection. PhD thesis, University of Western Australia, Western Australia.

    Google Scholar 

  5. Ibrahim, R. A. (2008). Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314(3–5), 371–452.

    Article  Google Scholar 

  6. Arafat, R. M. D., Park, S. T., & Sajal, C. B. (2010). Design of a vehicle suspension system with negative stiffness system. IST Transaction of Mechanical System Theoretic and Application, 1(2), 1–7.

    Google Scholar 

  7. Green, G. S. (1945). The effect of flexible ground supports on the pitching vibrations of an aircraft. R&M (Vol. 2291).

    Google Scholar 

  8. Xing, J. T., Xiong, Y. P., & Price, W. G. (2005). Passive-active vibration isolation systems to produce zero or infinite dynamic modulus. Journal of Sound and Vibration, 286(3), 615–636.

    Article  Google Scholar 

  9. Blair, D. G., Winterflood, J., & Slagmolen, B. (2002). High performance vibration isolation using springs in euler column buckling mode. Physics Letters A, 300(2–3), 122–130.

    Google Scholar 

  10. Platus, D. L. (2014). Vibration isolation systems.

    Google Scholar 

  11. Zhang, J. Z., Li, D., & Chen, M. J. (2004). An ultra-low frequency engineering material. Journal of Engineering Materials, 57(258), 231–236.

    Google Scholar 

  12. Alabuzhev, P., Gritchin, A., & Kim, L. (1989). Vibration protecting and measuring systems with quasi-zero stiffness. New York: Hemisphere Publishing Co, Taylor and Francis Group.

    Google Scholar 

  13. Carrella, A., Brennam, M. J., & Waters, T. P. (2007). Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301(3–5), 678–689.

    Article  Google Scholar 

  14. Kovacic, I., Brennam, M. J., & Waters, T. P. (2008). A study of a non-linear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 315(3), 700–711.

    Article  Google Scholar 

  15. Dimminie, D. C., & Haberman, R. (2000). Slow passage through a saddle-center bifurcation. Journal of Nonlinear Science, 10(2), 197–221.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lichtenberg, A. J., & Lieberman, M. A. (1992). Regular and chaotic dynamics. New York: Springer.

    Book  MATH  Google Scholar 

  17. DE Freitas, M. S. T., Viana, R. L., & Grebogi, C. (2004). Multistability, basin boundary structure, and chaotic behavior in a suspension bridge model. International Journal of Bifurcation and Chaos, 14(3), 927–950.

    Article  MathSciNet  MATH  Google Scholar 

  18. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillation, dynamical system and bifurcation of vector fields. New York: Springer.

    Book  MATH  Google Scholar 

  19. Hong, L., & Xu, J. X. (1999). Crisis and chaotic transients studied by the generalized cell mapping digraph method. Physics Letters A, 262(4–5), 361–375.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hong, L., & Xu, J. X. (2004). Crisis and chaotic saddle and attractor in forced duffing oscillator. Communication of Nonlinear Science Numerical Simulation, 9(3), 313–329.

    Article  MathSciNet  MATH  Google Scholar 

  21. Nusse, H. E., Ott, E., & Yorke, J. A. (1995). Saddle-node bifurcations on fractal basin boundaries. Physical Review Letters, 75(13), 2482–2485.

    Article  Google Scholar 

  22. Souza, S. L. T., Caldas, I. L., & Viana, R. L. (2004). Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes. Chaos, Solition and Fractals, 21(3), 763–772.

    Article  MATH  Google Scholar 

  23. Souza, S. L. T., Caldas, I. L., Viana, R. L., & Balthazar, J. M. (2008). Control and chaos for vibro-impact and non-ideal oscillators. Journal of theoretical and applied mechanics, 46(3), 641–664.

    Google Scholar 

  24. Wolf, A., Jack, B., Swift, H., Swinny, L., & John, A. (1985). Determining lyapunov exponents from a time series. Physica D-Nonlinear Phenomena, 16(3), 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hsu, C. S. (1992). Global analysis by cell mapping. International Journal of bifurcation and chaos, 2(4), 727–771.

    Article  MathSciNet  MATH  Google Scholar 

  26. Nusse, H. E., & Yorke, J. A. (1994). Dynamics: Numerical explorations (Vol. 101)., Applied Mathematical Sciences. New York: Springer.

    Google Scholar 

  27. Thompson, J. M. T., & Stewart, H. B. (2002). Nonlinear dynamics and chaos (2nd ed.). Chichester: Wiley.

    MATH  Google Scholar 

  28. Hao, Z. F., & Cao, Q. J. (2015). The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. Journal of Sound & Vibration, 340, 61–79.

    Article  Google Scholar 

  29. Li, Z. X., Cao, Q. J., Wiercigroch, M., & Léger, A. (2013). Analysis of the periodic solutions of a smooth and discontinuous oscillator. Acta Mechanica Sinica, 29(4), 575–582.

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Y. Z., & Chen, L. Q. (2001). Nonlinear Vibration. Beijing, China: Higher Education Press.

    Google Scholar 

  31. Xing, J. T. (2015). Energy flow theory of nonlinear dynamical systems with applications. London: Springer.

    Book  MATH  Google Scholar 

  32. Xing, J. T., & Price, W. G. (1999). A power flow analysis based on continuum dynamics. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 455(1982), 401–436.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Cao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, Q., Léger, A. (2017). An Isolator: Dynamics and Vibration Isolation. In: A Smooth and Discontinuous Oscillator. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53094-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53094-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53092-4

  • Online ISBN: 978-3-662-53094-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics