Biokerosene pp 189-220 | Cite as

Lignocellulosic Biomass

  • Anne RödlEmail author


This paper gives an overview of some important annual and perennial crops for the provision of lignocellulosic biomass. It describes their cultivation practices as well as their requirements concerning site characteristics and typical logistic chains. Information on physical and chemical properties of these different lignocellulosic biomass plants determining their capability for biokerosene production is presented. Additionally, data on the potential yields and the areas currently under cultivation are given for each of the described crops.


  1. [1]
    Maniatis, K., Weitz, M.and Zschocke, A. (2013): 2 million tons per year: A performing biofuels supply chain for EU aviation. August 2013 Update. Revision of the version initially published June 2011. Brussels.Google Scholar
  2. [2]
    Andersson B, Lindvall E (1997) Use of biomass from reed canary grass (Phalaris arundinacea) as raw material for production of paper pulp and fuel. In: Christie BR (ed) Proceedings of the XVIII International Grassland Congress, Canada. XVIII International Grassland Congress. Calgary.Google Scholar
  3. [3]
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technol 83(1):37–46CrossRefGoogle Scholar
  4. [4]
    Phyllis2 (2012) Database for biomass and waste. Energy Research Centre of the Netherlands.
  5. [5]
    Mohammed IY, Abakr YA, Kazi FK, Yusup S, Alshareef I, Chin SA (2015) Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8(5):3403–3417CrossRefGoogle Scholar
  6. [6]
    Rengsirikul K, Ishii Y, Kangvansaichol K, Sripichitt P, Punsuvon V, Vaithanomsat P, Nakamanee G and Tudsri S (2013) Biomass Yield, Chemical Composition and potential Ethanol Yields of 8 Cultivars of Napiergrass (Pennisetum purpureum) Harvested 3-monthly in central Thailand [online]. J Sustain Bioenergy Syst 3: 107–112CrossRefGoogle Scholar
  7. [7]
    Rabemanolontsoa H, Saka S (2013) Comparative study on chemical composition of various biomass species. RSC Adv 3(12):3946–3956CrossRefGoogle Scholar
  8. [8]
    Cotana F, Cavalaglio G, Pisello AL, Gelosia M, Ingles D, Pompili E (2015) Sustainable ethanol production from common reed (Phragmites australis) through simultaneuos saccharification and fermentation. Sustainability 7(9):12149–12163CrossRefGoogle Scholar
  9. [9]
    Vaičekonytė R, Kiviat E, Nsenga F, Ostfeld A (2014) An exploration of common reed (Phragmites australis) bioenergy potential in North America. Mires Peat 13(12):1–9Google Scholar
  10. [10]
    Bassam N.El (1998) Energy plant species. Their use and impact on environment and development. James & James, LondonGoogle Scholar
  11. [11]
    Lemons e Silva CF, Schirmer MA, Maeda RN, Barcelos CA, Pereira Jr, N (2015) Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron J Biotechnol 18(1):10–15Google Scholar
  12. [12]
    Komolwanich T, Tatijarern P, Prasertwasu S, Khumsupan D, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2014) Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 21(3):1327–1340CrossRefGoogle Scholar
  13. [13]
    Lopez F, Garcia JC, Perez A, Feria JM, Zamudio MA, Garrote G (2010) Chemical and energetic characterization of species with a high-biomass production: Fractionation of their components. Environ Prog Sustain Energy 29(4):499–509CrossRefGoogle Scholar
  14. [14]
    Nultsch W (2001) Allgemeine Botanik. 11.völlig neubearb. und erweiterte Auflage; Thieme, Stuttgart, New York.Google Scholar
  15. [15]
    FAO (2015a) FAO statistical pocketbook. FAO, RomeGoogle Scholar
  16. [16]
    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca, Gustavo AB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefGoogle Scholar
  17. [17]
    Gifford E M (2016) Gingkophyte. Encyclopaedia Britannica, Chicago. accesed on: 20.07.2016
  18. [18]
    Roloff A (2016) Baum des Jahrtausends – Ginkgo Biloba. Stiftung Baum des JahresMarktredwitz. accesed on: 20.07.2016.
  19. [19]
    Roloff A, Bärtels A (1996) Gehölze: Bestimmung, Herkunft und Lebensbereiche, Eigenschaften und Verwendung. Gartenflora, vol. 1, Ulmer, Stuttgart.Google Scholar
  20. [20]
    Hooge H (2016) Die Waldkiefer. Schutzgemeinschaft Deutscher Wald (SDW). Baum Infos Faltblätter, BonnGoogle Scholar
  21. [21]
    Aas G (2007) Systematik, Verbreitung und Morphologie der Waldkiefer (Pinus sylvestris). In: Wauer A, Schmidt S (eds) Beiträge zur Waldkiefer, LWF Wissen Vol. 57, Bayrische Landesanstalt für Wald und Forstwirtschaft (LWF), Freising. pp 7–11Google Scholar
  22. [22]
    Polley H, Hennig P, Krother F, Marks A, Riedel T, Schmidt U, Schwitzgebel F, Stauber T (2016) Der Wald in Deutschland. Ausgewählte Ergebnisse der dritten Bundeswaldinventur. 2. korrigierte Auflage. BMEL, BerlinGoogle Scholar
  23. [23]
    Grosser D (2007) Das Holz der Kiefer – Eigenschaften und Verwendung. In: Wauer A, Schmidt O (eds) Beiträge zur Waldkiefer, LWF Wissen Vol. 57, Bayrische Landesanstalt für Wald und Forstwirtschaft (LWF), Freising. pp 67–71Google Scholar
  24. [24]
    Griesche C (2016) Die Fichte. Schutzgemeinschaft Deutscher Wald (SDW). Baum Infos Faltblätter, Bonn.Google Scholar
  25. [25]
    Gössinger L. (2016) Die Eiche. Schutzgemeinschaft Deutscher Wald (SDW), Wald. Deine Natur. Baum Infos Faltblätter, BonnGoogle Scholar
  26. [26]
    Schmidt O. (2016) Die Buche. Schutzgemeinschaft Deutscher Wald (SDW), Wald. Deine Natur. Baum Infos Faltblätter, BonnGoogle Scholar
  27. [27]
    Cheers G (2003) Botanica – Das ABC der Pflanzen 10.000 Arten in Text und Bild. 4.aktualisierte deutsche Ausgabe. Könemann Verlagsgesellschaft, Köln.Google Scholar
  28. [28]
    Indufor (2012) Forest Stewardship Council (FSC). Strategic review on the future of foresat plantations. Indufor, forest intelligence, HelsinkiGoogle Scholar
  29. [29]
    Serra R, Stefania B, Meira T (2015) Eucalyptus monoculture and common lands, Portugal. Joan Martinez Alier, Environmental Justice Atlas, Barcelona. accessed on: 15.07.2016
  30. [30]
    FAO (2012a) FRA 2015. Terms and definitions, forest resources assessment working paper (180). FAO – Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  31. [31]
    Keenan RJ, Reams GA, Achard F, Freitas JV de, Grainger A, Linquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. Forest Ecol. Manag 352:9–20CrossRefGoogle Scholar
  32. [32]
    EEA (2007) European forest types. Categories and types for sustainable forest management reporting and policy, 2nd edn. EEA Technical report (No 9/2006). EEA European Environment Agency, CopenhagenGoogle Scholar
  33. [33]
    FAO (2016b) FAOSTAT. Food and Agriculture Organization of the United Nations (FAO), Rome. Accessed 27 July 2016
  34. [34]
    Köhl M, Plugge D (2016) Forstwirtschaftlich produzierte Biomasse. In: Martin K, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer, Berlin, pp 125–166Google Scholar
  35. [35]
    FAO (2016c) Yearbook of forest products 2014. FAO – Food and Agriculture Organization of the United Nations, FAO Forestry Series (49), RomeGoogle Scholar
  36. [36]
    FAO (2012b) Improving lives with poplars and willows. Synthesis of country reports. 24th session of the International Poplar Commission, Dehradun, India. FAO – Food and Agriculture Organization of the United Nations, Working Paper (IPC/12), Forest Assessment, Management and Conservation Division, RomeGoogle Scholar
  37. [37]
    Hinge J, Christou M., (2012) Optimum harvest-storage options – handling requirements. SP2 – studies on biomass feedstock and optimisation for the selected value chain. WP2.2 – biomass supply chains. EUROBIOREF European multilevel integrated Biorefinery design for sustainable biomass processing, (D2.2.2 and D2.2.3), FP7 – Energy. 2009. 3.3.1, ParisGoogle Scholar
  38. [38]
    Ball J, Carle J, Del Lungo A (2005) Contribution of poplars and willows to sustainable forestry and rural development. Unasylva 56(221):3–9Google Scholar
  39. [39]
    Facciotto G, Minotta G, Paris P, Pelleri F (2015) Tree farming, agroforestry and the new green revolution. A necessary alliance. In: Ciancio O, Ciuti A, Chiara L, Morosi C, Piemontese FP, Puccioni G (eds) Proceedings of the Second International Congress of Sylviculture, Vol. 2 Accademia Italiana di Sienze Forestali Florence, pp 1–13Google Scholar
  40. [40]
    Caslin B, Finnan J, Johnston C, McCracken A, Walsh L, (2015) Short rotation coppice willow. Best practice guidelines. Agri-Food and Biosciences Institute (AFBI), BelfastGoogle Scholar
  41. [41]
    Eppler U, Petersen J-E (2007) Short rotation forestry, short rotation coppice and energy grassess in he European Uninion: agro-environmental aspects, present use and perspectives, Background Paper. Fachhochschule Eberswalde, EberswaldeGoogle Scholar
  42. [42]
    FAO (2016a) 2014 Global forest products facts and figures. FAO – Food and Agriculture Organization of the United Nations, Rome. Forest products statistics. Accessed 09 May 2016
  43. [43]
    Pepke E (2010) Global wood markets: cosumption, production and trade. International Forestry and Global Issue, UNECE/FAO Timber Section, NancyGoogle Scholar
  44. [44]
    FAO (2015b) Resurgence in global wood production. FAO – Food and Agriculture Organization of the United Nations, Rome. News Article. Accessed 07 Oct 2016
  45. [45]
    Pude R (2012) Miscanthus-Anbautelegramm. Universität Bonn, Bonn. Accessed 10 Aug 2016
  46. [46]
    Lewandowski I (2016) Landwirtschaftlich produzierte Biomasse. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer, Berlin pp 167–247Google Scholar
  47. [47]
    Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles D, Franco A, Hanson J, Mullen B, Patridge I, Peters M, et al, Schultze-Kraft R (2005) Tropical forages: an interactive selection tool. CSIRO, DPI&F (Qld), CIAT and ILRI, Brisbane. Accessed 10 Aug 2016
  48. [48]
    Köbbing JF, Thevs N, Zerbe S (2013a) The utilisation of reed (Phragmites australis): a review. Mires and Peat 13(1):1–14.Google Scholar
  49. [49]
    Komulainen M, Simi P, Hagelberg E, Ikonen I, Lyytinen S (2008) Reed energy. Possibilities of using the common reed for energy generation in Southern Finland, Reports (67). Turku University of Applied Sciences, TurkuGoogle Scholar
  50. [50]
    Laurent A, Pelzer E, Loyce C, Makowski D (2015) Ranking yields of energy crops: a meta-analysis using direct and indirect comparisons. RENEW SUST ENERG REV 46:41–50CrossRefGoogle Scholar
  51. [51]
    Mitchell RB, Schmer MR (2012) Switchgrass harvest and storage. University of Nebraska, Agronomy & Horticulture – Faculty Publication (Paper 548), NebraskaCrossRefGoogle Scholar
  52. [52]
    Venturi P, Monti A, Piani I, Venturi G (2004) Evaluation of harvesting and post-harvesting techniques for energy destination of switchgrass. In: ETA. Florence (ed) 2nd World Conf. and Tech. Exhibit. on biomass for energy, industry and climate protection. ETA-Florence, WIP-Munich, Florence, Munich, pp 234–236Google Scholar
  53. [53]
    Grebe, S.; Hartmann, S.; Belau, T.; Döhler, H.; Eckel, H.; Frisch, J.; Fröba, N.; Funk, M.; Grube, J.; Horlacher, D.; Horn, C.; Kloepfer, F.; Lorbacher, R.; Sauer, N.; Schroers, J. O.; Wirth, B.and Witzel, E. (2012): Energiepflanzen. Daten für die Planung des Energiepflanzenanbaus, 2. Auflage. KTBL-Kuratorium für Technik und Bauwesen in der Landwirtschaft: Damstadt.Google Scholar
  54. [54]
    OPTIMISC (2016) Information Platform FP7 OPTIMISC – Optimizing Miscanthus biomass production, Agentur für Nachhaltige Nutzung von Agrarlandschaften, Freiburg. Accessed 01 Aug 2016
  55. [55]
    Larsen S, Jaiswal D, Bentsen N S, Wang D and Long S P (2016) Comparing predicted yield and yield stability of willow and Miscanthus across Denmark. GCB Bioenerg 8 (6):1061-1070.CrossRefGoogle Scholar
  56. [56]
    Fritz M, Formowitz B (2009) Miscanthus: Anbau und Nutzung. Informationen für die Praxis, Berichte aus dem TFZ (19), TFZ-Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe, StraubingGoogle Scholar
  57. [57]
    Andersson M, Cameron DG, Dear BS, Halling M, Hoare D, Frame J, Houérou H. Le, Izaquirre P, Koivisto J, Ladner J, et al, Victor J (2005) Grassland species profiles, FAO – Food and Agriculture Organization of the United Nations, Rome. Accessed 10 Aug 2016
  58. [58]
    Köbbing JF, Thevs N, Zerbe S (2013b) The utilization of common reed (Phagmites australis) – a review. Reed as a resource. Institut für Botanik und Landschaftsökologie Universität GreifswaldGoogle Scholar
  59. [59]
    Odero D, Gilbert R, Ferrell J, Helsel Z (2011) Production of giant reed for biofuel, SS-AGR (318). University of Florida, IFAS Extension, GainsvilleGoogle Scholar
  60. [60]
    Pankratius M (2010) Rohrglanzgras – phalaris arundinacea L. – reed canary grass – Havelmielitz, Nachwachsende Rohstoffe – Die Zukunft vom Acker. Accessed 10 Aug 2016
  61. [61]
    Schröder C, Schulze P, Luthardt V, Zeitz J (2015) Extensiv genutzte Rohrglanzgras Feuchtwiesen (Phalaris arundinacea L.) für Futter- und energetische Verwertung, Steckbrief für Niedermoorbewirtschaftung bei unterschiedlichen Wasserverhältnissen (Nr. 07). HNE Eberswalde, Humbold-Universität Berlin, BerlinGoogle Scholar
  62. [62]
    Wichtmann W, Wichtmann S (2010) Paludikultur – Alternativen für Moorstandorte durch nasse Bewirtschaftung. Energetische Verwertung von Niedermoorbiomasse. Acker + plus, 05 Oct, pp 86–89Google Scholar
  63. [63]
    Christou M (2011) The terrestrial biomass: formation and properties (crops and residual biomass). EUROBIOREF – summer school, CRES, LecceGoogle Scholar
  64. [64]
    Jochem D, Weimar H, Bösch M, Mantau U, Dieter M (2015) Estimation of wood removals and fellings in Germany: a calculation approach based on the amount of used roundwood. Eur. J. For. Res. 134(5):869–888CrossRefGoogle Scholar
  65. [65]
    Kupferschmid A (2001) Rindenkunde und Rindenverwertung, (Teil 4). ETH Zürich, Professur Holzwissenschaften, ZürichGoogle Scholar
  66. [66]
    Lang A (2002) Altholzverwertung, Altholzverordnung. 9. Quedlinburger Holzbautagung, QuedlinburgGoogle Scholar
  67. [67]
    Verheye W (2010) Growth and production of sugarcane. In: Verheye WH, Bayles MB (eds) Soils, plant growth and crop production, vol. II. UNESCO-EOLSS, Paris pp 1–10Google Scholar
  68. [68]
    Abd-El Mawla HA, Hemeida BE (2015) Sugarcane mechanical harvesting-evaluation of local applications. J Soil Sci Agric Eng Mansoura University 6(1):129–141Google Scholar
  69. [69]
    Andreoli C, Pimentel D, Pereira de Souza S (2012) Net energy balance and carbon footprint of biofuel from corn and sugarcane. In: Pimentel D (ed) Global economic and environmental aspects of biofuels. Taylor & Francis Group, Boca Raton, pp 221–248CrossRefGoogle Scholar
  70. [70]
    Hunsigi G (1993) Production of sugarcane: theory and practice. Advanced series in agricultural science, 21. Springer, BerlinCrossRefGoogle Scholar
  71. [71]
    Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4 (Article 107):1–18Google Scholar
  72. [72]
    Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375CrossRefGoogle Scholar
  73. [73]
    Clean Energy Council (2014) Using bagasse for bioenergy, Clean Energy Council Australia, Melbourne, bioenergy bulletin. Accessed 10 Aug 2016
  74. [74]
    Reinhold G (2001) Betriebswirtschaftliche Bewertung derBereitstellung von Stroh und Energiegetreide. In: FNR (ed) Energetische Nutzung von Stroh, Ganzpflanzengetreide und weiterer halmgutartiger Biomasse. Gülzower Fachgespräche vol. 17, FNR, Gülzow, Gülzow. pp 50–61Google Scholar
  75. [75]
    Vetter A (2001) Qualitätsanforderungen an halmgutartige Bioenergieträger hinsichtlich der energetischen Verwertung. In: FNR (ed) Energetische Nutzung von Stroh, Ganzpflanzengetreide und weiterer halmgutartiger Biomasse. Gülzower Fachgespräche vol. 17, FNR, Gülzow. vol. 17. Gülzow, pp 36–49Google Scholar
  76. [76]
    Leible L Kälber S, Kappler G (2011) Systemanalyse zur gaserzeugung aus Biomasse. Untersuchung ausgewählter Aspekte: KIT Scientific Reports, 7580. KIT Scientific, KarlsruheGoogle Scholar
  77. [77]
    Lange S (2008) Untersuchung ausgewählter Aspekte: Biomasseaufkommen und -bereitstellung Biomasseeinspeisung in einen DruckvergaserSystemanalytische Untersuchung zur Schnellpyrolyse als Prozessschritt bei der Produktion von Synthesekraftstoffen aus Stroh und Waldrestholz. Dissertation, Universität Karlsruhe, Karlsruhe. Fakultät für Chemieingenieurswesen und VerfahrenstechnikGoogle Scholar
  78. [78]
    Oechsner H (2009) Thermische Verwertung halmgutartiger Biomasse. In: Fachtagung Bioenergie “EEG und Gülleverwertung – Thermische Verwertung von Energiepflanzen Herbertingen-MarbachGoogle Scholar
  79. [79]
    Santiaguel AF (2013) A second life for rice husk. Rice Today (April–June), pp 12–13Google Scholar
  80. [80]
    Thompson J. L, Tyner W. E (2014) Corn stover for bioenergy production: cost estimates and farmer supply response. Biomass and Bioenergy 62:166–173CrossRefGoogle Scholar
  81. [81]
    DMK (2016b) Erntemengen Körner- und Silomais, DKM-Deutsches Maiskomitee e.V., Bonn. Accessed 11 Aug 2016
  82. [82]
    DMK (2016a) Die wichtigsten Körnermais-Anbauländer in der Welt, DKM-Deutsches Maiskomitee e.V., Bonn. Accessed 11 Aug 2016
  83. [83]
    DMK (2016c) Flächenproduktivität des Maisanbaus weltweit, DKM-Deutsches Maiskomitee e.V., Bonn. Accessed 11 Aug 2016
  84. [84]
    Kolbe H (2013) Standortangepasste Humusversorgung im Maisanbau. Mais 40(2):56–62Google Scholar
  85. [85]
    Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technol 88(1):17–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Hamburg University of TechnologyInstitute of Environmental Technology and Energy EconomicsHamburgGermany

Personalised recommendations