Biokerosene pp 665-686 | Cite as

Blending of Synthetic Kerosene and Conventional Kerosene

  • Jan PechsteinEmail author
  • Alexander Zschocke


According to the current standards synthetic kerosene must be blended with conventional hydrocarbons or Jet A or Jet A-1 before it can be released as jet fuel. Besides a certain volumetric limit jet fuel specifications define a set of (additional) properties a blend must fulfill for certification. Thus, a proper selection of matching synthetic and conventional fuel batches for blending (“matching blendstock”) will be of significant importance at some point in the future aviation fuel supply chain. If the properties of the involved batches are unfavorable, the maximum allowable blending ratio may not be achievable. Yet from a technical point of view, even blending ratios beyond the currently specified limit could be possible, if two favorable batches were chosen.

Surveys have shown that properties of conventional kerosene vary considerably within the prescribed range of the specification. Against this background this chapter first provides an overview of the main types of molecules present in kerosene in order to illustrate their influence on fuel properties. Afterwards conventional and synthetic kerosene are characterized in detail. Finally, the most relevant properties for blending are identified for a wide variety of synthetic and conventional kerosene.


  1. [1]
    ASTM D7566-14a (2014) American Society for Testing and Materials: Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons, ASTM International, West Conshohocken, PAGoogle Scholar
  2. [2]
    Zschocke A, Scheuermann S, Ortner J (2017) High biofuel blends in aviation (HBBA), Final Report, published at HBBA.euGoogle Scholar
  3. [3]
    Rickard G (2009) The Quality of Aviation Fuel Available in the United Kingdom Annual Survey 2008, First Issue, 3rd December 2009, Report for Energy Institute conducted by QinetiQGoogle Scholar
  4. [4]
    Zschocke A (2014) Fuel properties and blending issues (world biofuels market). Presentation held at World Biofuels Market conference, Amsterdam. Accessed 6 Mar 2014Google Scholar
  5. [5]
    Zschocke A, Gröngröft A (Mitarb.), Meisel K (Mitarb.), Hausschild S (Mitarb.), Grasemann E (Mitarb.), Peetz D (Mitarb.), Meyer K (Mitarb.), Roth A (Mitarb.), Riegel F (Mitarb.), Endres C (Mitarb.) (2004) Abschlussbericht zu dem Vorhaben BurnFAIR: Arbeitspakete 1.1 bis 1.April. 2014Google Scholar
  6. [6]
    Defense Standard 91-91 (2012) Turbine fuel, kerosine type, jet A-1 NATO code: F-35 Joint Service Designation, AVTURGoogle Scholar
  7. [7]
    Beyer H, Walter W (2004) Lehrbuch der organischen Chemie: Mit 24 Tabellen. 24., überarb. Aufl. StuttgartGoogle Scholar
  8. [8]
    Chevron Corporation (ed) (2006) Aviation fuels technical review. Chevron Corporation, HoustonGoogle Scholar
  9. [9]
    Rachner M (1998) Die Stoffeigenschaften von Kerosin Jet A-1, DLR-Mitteilung, 98-01, Institut für Antriebstechnik, KölnGoogle Scholar
  10. [10]
    Coordinating Research Council (ed) (2004) Handbook of aviation fuel properties, 3rd edn (CRC Report 635) Alpharetta, GAGoogle Scholar
  11. [11]
    Petroleum HPV Testing Group (2010) Kerosene/jet fuel category assessment document, Submitted to the US EPA, by The American Petroleum Institute, Consortium Registration # 1100997, September 21, 2010, Available on the Internet
  12. [12]
    Graham J, Rahmes T, Kay M, Belieres J-P, Kinder J, Millett S, Ray J, Vannice W, Trela J (2013) Impact of alternative jet fuel and fuel blends on non-metallic materials used in impact of alternative jet fuel and fuel blends on non-metallic materials used in commercial aircraft fuel systems, Final Report for Alternative Fuels Task: Impact of SPK Fuels and Fuel Blends on Non-metallic Materials used in Commercial Aircraft Fuel Systems, Updated December 18, 2013, FAA Office of Environment and Energy under CLEEN OTA Number: DTFAWA-10-C-0030, The Boeing Company and University of Dayton Research Institute, Available on the Internet: Google Scholar
  13. [13]
    Frick, Viktoria (2011) Verfahrenskonzept zur Wasserstofferzeugung durch katalytische Umwandlung definierter Kerosinfraktionen. Dissertation, Universität Stuttgart, Fortschritt-Berichte VDI / Reihe 3; Nr. 924Google Scholar
  14. [14]
    Gupta M, Roquemore M, Edwards T (2014) Streamline ASTM International jet fuels approval process (National Jet Fuels Combustion Programm). NIST, Boulder., Accessed 02 June 2015
  15. [15]
    Rumizen M (2014) Certification-qualification breakout session. 28 Jan 2014Google Scholar
  16. [16]
    Lamoureux J, Lew L, Biddle T (2014) Evaluation of KiOR hydrotreated depolimerized cellulosic jet (HDCJ) fuel , Presentation, Commercial Aviation Alternative Fuels Initiative. Available at Google Scholar
  17. [17]
  18. [18]
    ASTM D1655-13a (2013) American Society for Testing and Materials: Standard specification for aviation turbine fuels. ASTM International, West Conshohocken, PAGoogle Scholar
  19. [19]
    Standard 1530. 2013. Quality assurance requirements for the manufacture, storage and distribution of aviation fuels to airports Energy Institute Standard EI 1530 (formerly Joint Inspection Group [JIG])Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Hamburg University of TechnologyInstitute of Environmental Technology and Energy EconomicsHamburgGermany
  2. 2.Deutsche Lufthansa AGFrankfurtGermany

Personalised recommendations