EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-Misuse Resistant MAC

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9814)

Abstract

We propose a nonce-based MAC construction called EWCDM (Encrypted Wegman-Carter with Davies-Meyer), based on an almost xor-universal hash function and a block cipher, with the following properties: (i) it is simple and efficient, requiring only two calls to the block cipher, one of which can be carried out in parallel to the hash function computation; (ii) it is provably secure beyond the birthday bound when nonces are not reused; (iii) it provably retains security up to the birthday bound in case of nonce misuse. Our construction is a simple modification of the Encrypted Wegman-Carter construction, which is known to achieve only (i) and (iii) when based on a block cipher. Underlying our new construction is a new PRP-to-PRF conversion method coined Encrypted Davies-Meyer, which turns a pair of secret random permutations into a function which is provably indistinguishable from a perfectly random function up to at least \(2^{2n/3}\) queries, where n is the bit-length of the domain of the permutations.

Keywords

Wegman-Carter MAC Davies-Meyer construction Nonce-misuse resistance Beyond-birthday-bound security 

Notes

Acknowledgments

Many thanks to Thomas Peyrin. This paper stemmed from discussions with him, and he took part to the early stages of this work.

References

  1. [ABBT15]
    Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted polynomials and forgery attacks on GCM. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 762–786. Springer, Heidelberg (2015)Google Scholar
  2. [BC09]
    Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. [BCK96]
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  4. [Ber00]
    Bernstein, D.J.: Floating-point arithmetic and message authentication. Unpublished manuscript (2000). http://cr.yp.to/papers.html#hash127
  5. [Ber05a]
    Bernstein, D.J.: Stronger security bounds for permutations. Unpublished manuscript (2005). http://cr.yp.to/papers.html#permutations
  6. [Ber05b]
    Bernstein, D.J.: Stronger security bounds for Wegman-Carter-Shoup authenticators. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [Ber05c]
    Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. [Ber07]
    Bernstein, D.J.: Polynomial evaluation and message authentication. Unpublished manuscript (2007). http://cr.yp.to/papers.html#pema
  9. [BGK99]
    Bellare, M., Goldreich, O., Krawczyk, H.: Stateless evaluation of pseudorandom functions: security beyond the birthday barrier. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 270. Springer, Heidelberg (1999)Google Scholar
  10. [BGM04]
    Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in message authentication and authenticated encryption. IACR Cryptology ePrint Archive, Report 2004/309 (2004). http://eprint.iacr.org/2004/309
  11. [BHK+99]
    Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 216. Springer, Heidelberg (1999)Google Scholar
  12. [BI99]
    Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseudorandom function based constructions, with applications to PRP to PRF conversion. IACR Cryptology ePrint Archive, Report 1999/024 (1999). http://eprint.iacr.org/1999/024
  13. [BKR98]
    Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing security by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. [BKR00]
    Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. [BPR05]
    Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. [BR05]
    Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key constructions. J. Cryptol. 18(2), 111–131 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. [BR06]
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). http://eprint.iacr.org/2004/331 CrossRefGoogle Scholar
  18. [Bra82]
    Brassard, G.: On computationally secure authentication tags requiring short secret shared keys. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 79–86. Plenum Press, New York (1982)Google Scholar
  19. [CLL+14]
    Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-round even-mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014). http://eprint.iacr.org/2014/443 CrossRefGoogle Scholar
  20. [CLP14]
    Cogliati, B., Lampe, R., Patarin, J.: The indistinguishability of the XOR of \(k\) permutations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 285–302. Springer, Heidelberg (2015)Google Scholar
  21. [CS14]
    Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014). http://eprint.iacr.org/2013/222 CrossRefGoogle Scholar
  22. [CS16]
    Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-misuse resistant MAC. Full version of this paper. http://eprint.iacr.org/2016/525
  23. [DS11]
    Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birthday barrier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 323–342. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. [Fer05]
    Ferguson, N.: Authentication weaknesses in GCM. Comments Submitted to NIST Modes of Operation Process (2005). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
  25. [GMS74]
    Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.A.: Codes which detect deception. Bell Syst. Tech. J. 53(3), 405–424 (1974)MathSciNetCrossRefMATHGoogle Scholar
  26. [HK97]
    Halevi, S., Krawczyk, H.: MMH: software message authentication in the Gbit/second rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  27. [HP08]
    Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. [HWKS98]
    Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Heidelberg (1998)Google Scholar
  29. [JJV02]
    Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC beyond the birthday paradox limit: a new construction. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. [JL04]
    Jaulmes, É., Lercier, R.: FRMAC, a fast randomized message authentication code (2004). http://eprint.iacr.org/2004/166
  31. [Jou06]
    Joux, A.: Authentication failures in NIST version of GCM. Comments Submitted to NIST Modes of Operation Process (2006). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
  32. [KR00]
    Krovetz, T., Rogaway, P.: Fast universal hashing with small keys and no preprocessing: the PolyR construction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 73–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. [Kra94]
    Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  34. [KVW04]
    Kohno, T., Viega, J., Whiting, D.: CWC: a high-performance conventional authenticated encryption mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 408–426. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. [Luc00]
    Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  36. [Min10]
    Minematsu, K.: How to Thwart birthday attacks against MACs via small randomness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  37. [MV04]
    McGrew, D.A., Viega, J.: The security and performance of the Galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  38. [Pat90]
    Patarin, J.: Pseudorandom permutations based on the DES scheme. In: Cohen, G.D., Charpin, P. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 193–204. Springer, Heidelberg (1991)Google Scholar
  39. [Pat91]
    Patarin, J.: New results on pseudorandom permutation generators based on the DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–312. Springer, Heidelberg (1992)Google Scholar
  40. [Pat08a]
    Patarin, J.: A proof of security in \(O(2^n)\) for the XOR of two random permutations. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer, Heidelberg (2008). http://eprint.iacr.org/2008/010 CrossRefGoogle Scholar
  41. [Pat08b]
    Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  42. [Pat13]
    Patarin, J.: Security in \(O(2^n)\) for the XOR of two random permutations: proof with the standard \(H\) technique. IACR Cryptology ePrint Archive, Report 2013/368 (2013). http://eprint.iacr.org/2013/368
  43. [PC15]
    Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304. Springer, Heidelberg (2014)Google Scholar
  44. [Rog95]
    Rogaway, P.: Bucket hashing and its application to fast message authentication. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer, Heidelberg (1995)Google Scholar
  45. [Saa12]
    Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. [Sho96]
    Shoup, V.: On fast and provably secure message authentication based on universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996)Google Scholar
  47. [WC81]
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)MathSciNetCrossRefMATHGoogle Scholar
  48. [Yas10]
    Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  49. [Yas11]
    Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  50. [ZWSW12]
    Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 296–312. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.University of VersaillesVersaillesFrance
  2. 2.ANSSIParisFrance

Personalised recommendations