Skip to main content

M11 Wärmeleitfähigkeit von Schüttschichten

  • Chapter
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

  • 3014 Accesses

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 989.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Hornung, U.: Homogenization and Porous Media. Springer, Berlin (1997)

    Book  Google Scholar 

  2. Tsotsas, E., Martin, H.: Thermal conductivity of packed beds: a review. Chem. Eng. Process 22, 19–37 (1987)

    Article  Google Scholar 

  3. Wakao, N., Kato, K.: Effective thermal conductivity of packed beds. J. Chem. Eng. Jpn. 2, 24–33 (1969)

    Article  Google Scholar 

  4. Kohout, M., Collier, A.P., Stepanek, F.: Thermal conductivity of wet particle assemblies. Int. J. Heat Mass Transf. 47, 5565–5574 (2004)

    Article  Google Scholar 

  5. Smith, K.C., Fisher, T.S.: Conduction in jammed systems of tetrahedra. J. Heat Transf. 135, 081301 (2013)

    Article  Google Scholar 

  6. Krischer, O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik, 1. Aufl. Springer, Berlin (1956)

    Book  Google Scholar 

  7. Zehner, P., Schlünder, E.-U.: Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen. Chem.Ing.Tech. 42, 933–941 (1970)

    Article  Google Scholar 

  8. Currie, J.A.: Gaseous diffusion in porous media. Br. J. Appl. Phys. 11, 314–324 (1960)

    Article  Google Scholar 

  9. Turner, J.C.R.: Two-phase conductivity: the electrical conductance of liquid-fluidized beds of spheres. Chem. Eng. Sci. 31, 487–492 (1976)

    Article  Google Scholar 

  10. Meredith, R.E., Tobias, C.W.: Conductivities of emulsions. J. Electrochem. Soc. 108, 286–290 (1961)

    Article  Google Scholar 

  11. Zehner, P., Schlünder, E.-U.: Einfluß der Wärmestrahlung und des Druckes auf den Wärmetransport in nicht durchströmten Schüttungen. Chem.Ing.Tech. 44, 1303–1308 (1972)

    Article  Google Scholar 

  12. Bauer, R., Schlünder, E.-U.: Effective radial thermal conductivity of packings in gas flow. Int. Chem. Eng. 18, 189–204 (1978)

    Google Scholar 

  13. Bauer, R.: Effektive radiale Wärmeleitfähigkeit gasdurchströmter Schüttungen mit Partikeln unterschiedlicher Form und Größenverteilung. VDI-Forschungsh, Bd. 582. VDI-Verl., Düsseldorf (1977)

    Google Scholar 

  14. Tsotsas, E., Schlünder, E.-U.: The impact of particle size dispersity on the thermal conductivity of packed beds: measurements, numerical simulations, prediction. Chem. Eng. Technol. 14, 421–427 (1991)

    Article  Google Scholar 

  15. Yagi, S., Kunii, D.: Studies of effective thermal conductivity in packed beds. AIChEJ. 3, 373–381 (1957)

    Article  Google Scholar 

  16. Imura, S., Takegoshi, E.: Effect of gas pressure on effective thermal conductivity. Nippon Kikai Gakkai Rombunshu 40, 489–497 (1974)

    Google Scholar 

  17. Tsotsas, E., Schlünder, E.-U.: Numerical calculation of the thermal conductivity of two regular bidispersed beds of spherical particles. Comput. Chem. Eng. 14, 1031–1038 (1990)

    Article  Google Scholar 

  18. Bauer, T., Collier, H., Stepanek, F.: A general analytical approach towards the thermal conductivity of porous media. Int. J. Heat Mass Transf. 17, 4181–4191 (1993)

    Article  Google Scholar 

  19. Raghavan, V.R., Martin, H.: Modelling of two-phase thermal conductivity. Chem. Eng. Process 34, 439–446 (1995)

    Article  Google Scholar 

  20. Vortmeyer, D.: Radiation in packed solids. Ger. Chem. Eng. 3, 124–138 (1980)

    Google Scholar 

  21. Tien, C.L.: Thermal radiation in packed and fluidized beds. Trans ASME, J Heat Transfer 110, 1230–1242 (1988)

    Article  Google Scholar 

  22. Gross, U., Tran, L.T.S.: Radiation effects on transient hot-wire measurements in absorbing and emitting porous media. Int. J. Heat Mass Transf. 47, 3279–3290 (2004)

    Article  Google Scholar 

  23. Abyzov, A.M., Goryunov, A.V., Shakhov, F.M.: Effective thermal conductivity of disperse materials. II. Effect of external load. Int. J. Heat Mass Transf. 70, 1121–1136 (2014)

    Article  Google Scholar 

  24. Slavin, A.J., Londry, F.A., Harrison, J.: A new model for the effective thermal conductivity of packed beds of solid spheroids. Int. J. Heat Mass Transf. 43, 2059–2073 (2000)

    Article  Google Scholar 

  25. Vargas, W.L., McCarthy, J.J.: Heat conduction in granular materials. AIChE J. 47, 1052–1059 (2001)

    Article  Google Scholar 

  26. Siu, W.W.M., Lee, S.H.K.: Transient temperature computation of spheres in three-dimensional random packings. Int. J. Heat Mass Transf. 47, 887–898 (2004)

    Article  Google Scholar 

  27. Hsu, C.T., Cheng, P., Wong, K.W.: Modified Zehner-Schluender models for stagnant thermal conductivity of porous media. Int. J. Heat Mass Transf. 37, 2751–2759 (1994)

    Article  Google Scholar 

  28. Carson, J.K., Lovatt, S.J., Tanner, D.J., Cleland, A.C.: Thermal conductivity bounds for isotropic, porous materials. Int. J. Heat Mass Transf. 48, 2150–2158 (2005)

    Article  Google Scholar 

  29. Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)

    Article  Google Scholar 

  30. Yang, X.H., Bai, J.X., Yan, H.B., Kuang, J.J., Lu, T.J., Kim, T.: An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams. Trans Porous. Med. 102, 403–426 (2014)

    Article  Google Scholar 

  31. Yu, G., Gu, D., Dai, D., Xia, M., Ma, C., Shi, Q.: On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy. J. Phys. D. Appl. Phys. 49, 135501 (2016)

    Article  Google Scholar 

  32. Botelho, S.J., Banerjee, R., Bazylak, A.: A unit-cell approach for determining the effective thermal conductivity of the polymer electrolyte membrane fuel cell microporous layer. Int. J. Heat Mass Transf. 89, 809–816 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Tsotsas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsotsas, E. (2019). M11 Wärmeleitfähigkeit von Schüttschichten. In: Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas. Springer Reference Technik(). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52989-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52989-8_30

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52988-1

  • Online ISBN: 978-3-662-52989-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics