Skip to main content

Genetic Diagnosis of Renal Diseases: Basic Concepts and Testing

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

The genomic architecture of kidney disease has fascinated developmental biologists and human geneticists for over four decades. Seminal discoveries of note include the discovery of genes implicated in autosomal dominant/recessive polycystic kidney disease, nephronophthisis and nephrotic syndrome. Uncovering disease-causing genes has not only helped refine our pathogenetic understanding of many renal diseases, but in many cases it has directly translated into concrete improvement of patient care. The recent emergence of next generation sequencing strategies has dramatically accelerated the discovery process, and constitutes the cornerstone towards the realization of personalized medicine. This chapter provides a brief overview of basic genomic/genetic concepts before delving into recent advances that are pertinent to the practice of contemporary pediatric nephrologists. From laboratory methods to interpretation of genetic variants, every topic is presented within a clinical framework and is enriched with numerous examples from the pediatric nephrology literature. The major benefits of genomics on the day-to-day practice of busy clinicians are as follows: it will expediate diagnosis, clarify prognosis and guide therapeutic choices. Our overarching goals for this chapter were twofolds: to first convince clinicians “already overloaded with information” that learning about genomics is a worthwhile investment that will pay dividends in the short-term, while at the same time providing an accessible port of entry into this complex field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guttmacher AE, Porteous ME, Mcinerney JD. Educating health-care professionals about genetics and genomics. Nat Rev Genet. 2007;8:151–7.

    Article  CAS  PubMed  Google Scholar 

  2. Stanescu HC, Arcos-Burgos M, Medlar A, et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med. 2011;364:616–26.

    Article  CAS  PubMed  Google Scholar 

  3. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

  4. Schmutz J, Wheeler J, Grimwood J, et al. Quality assessment of the human genome sequence. Nature. 2004;429:365–8.

    Article  CAS  PubMed  Google Scholar 

  5. Watson IR, Takahashi K, Futreal PA, Chin L. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14:703–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  8. Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–91.

    Article  CAS  PubMed  Google Scholar 

  9. Izarzugaza JM, Hopcroft LE, Baresic A, Orengo CA, Martin AC, Valencia A. Characterization of pathogenic germline mutations in human protein kinases. BMC Bioinforma. 2011;12 Suppl 4:S1.

    Article  CAS  Google Scholar 

  10. Spielmann M, Mundlos S. Structural variations, the regulatory landscape of the genome and their alteration in human disease. Bioessays. 2013;35:533–43.

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura Y. DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet. 2009;54:1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Consortium IH. The International HapMap Project. Nature. 2003;426:789–96.

    Article  CAS  Google Scholar 

  13. Consortium IH. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  CAS  Google Scholar 

  14. Pybus M, Dall’Olio GM, Luisi P, et al. 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Res. 2014;42:D903–9.

    Article  CAS  PubMed  Google Scholar 

  15. Alves I, Sramkova Hanulova A, Foll M, Excoffier L. Genomic data reveal a complex making of humans. PLoS Genet. 2012;8:e1002837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nat Genet. 2008;40:491–2.

    Article  CAS  PubMed  Google Scholar 

  17. Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Church DM, Lappalainen I, Sneddon TP, et al. Public data archives for genomic structural variation. Nat Genet. 2010;42(10):813–4. [letter].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kirby A, Gnirke A, Jaffe DB, et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013;45:299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tubio JM, Estivill X. Cancer: when catastrophe strikes a cell. Natare. 2011;470(7335):476.

    Article  CAS  Google Scholar 

  21. Christodoulou K, Tsingis M, Stavrou C, et al. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum Mol Genet. 1998;7:905–11.

    Article  CAS  PubMed  Google Scholar 

  22. Antignac C, Knebelmann B, Drouot L, et al. Deletions in the COL4A5 collagen gene in X-linked Alport syndrome. Characterization of the pathological transcripts in nonrenal cells and correlation with disease expression. J Clin Invest. 1994;93:1195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medjeral-Thomas N, Malik TH, Patel MP, et al. A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int. 2014;85(4):933–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gale DP, de Jorge EG, Cook HT, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376:794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barnes MR, Breen G. A short primer on the functional analysis of copy number variation for biomedical scientists. Methods Mol Biol. 2010;628:119–35.

    Article  CAS  PubMed  Google Scholar 

  26. Pook MA, Wrong O, Wooding C, Norden AG, Feest TG, Thakker RV. Dent’s disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mol Genet. 1993;2:2129–34.

    Article  CAS  PubMed  Google Scholar 

  27. Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990;248:1224–7.

    Article  CAS  PubMed  Google Scholar 

  28. Hildebrandt F, Otto E, Rensing C, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17:149–53.

    Article  CAS  PubMed  Google Scholar 

  29. Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet. 2009;18:R1–8.

    Article  CAS  PubMed  Google Scholar 

  30. Aitman TJ, Dong R, Vyse TJ, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. 2006;439:851–5.

    Article  CAS  PubMed  Google Scholar 

  31. Sanna-Cherchi S, Kiryluk K, Burgess KE, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet. 2012;91:987–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shuib S, Wei W, Sur H, et al. Copy number profiling in von Hippel-Lindau disease renal cell carcinoma. Genes Chromosomes Cancer. 2011;50:479–88.

    Article  CAS  PubMed  Google Scholar 

  33. Girgis AH, Iakovlev VV, Beheshti B, et al. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res. 2012;72:5273–84.

    Article  CAS  PubMed  Google Scholar 

  34. Riethoven JJ. Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods Mol Biol. 2010;674:33–42.

    Article  CAS  PubMed  Google Scholar 

  35. Reilly DS, Lewis RA, Ledbetter DH, Nussbaum RL. Tightly linked flanking markers for the Lowe oculocerebrorenal syndrome, with application to carrier assessment. Am J Hum Genet. 1988;42:748–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hertz JM, Persson U, Juncker I, Segelmark M. Alport syndrome caused by inversion of a 21 Mb fragment of the long arm of the X-chromosome comprising exon 9 through 51 of the COL4A5 gene. Hum Genet. 2005;118:23–8.

    Article  CAS  PubMed  Google Scholar 

  37. Vervoort VS, Smith RJ, O’Brien J, et al. Genomic rearrangements of EYA1 account for a large fraction of families with BOR syndrome. Eur J Hum Genet. 2002;10:757–66.

    Article  CAS  PubMed  Google Scholar 

  38. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer. 2012;12:663–70.

    Article  CAS  PubMed  Google Scholar 

  40. Maher CA, Wilson RK. Chromothripsis and human disease: piecing together the shattering process. Cell. 2012;148:29–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kloosterman WP, Guryev V, van Roosmalen M, et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet. 2011;20:1916–24.

    Article  CAS  PubMed  Google Scholar 

  42. Chiang C, Jacobsen JC, Ernst C, et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet. 2012;44:390–7. S1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ, et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 2012;1:648–55.

    Article  CAS  PubMed  Google Scholar 

  44. Kestila M, Lenkkeri U, Mannikko M, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  CAS  PubMed  Google Scholar 

  45. Consortium TIPKD. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell. 1995;81:289–98.

    Article  Google Scholar 

  46. Lloyd SE, Pearce SH, Fisher SE, et al. A common molecular basis for three inherited kidney stone diseases. Nature. 1996;379:445–9.

    Article  CAS  PubMed  Google Scholar 

  47. Consortium THYP. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11:130–6.

    Article  Google Scholar 

  48. Wilson FH, Hariri A, Farhi A, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306:1190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ragoussis J. Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet. 2009;10:117–33.

    Article  CAS  PubMed  Google Scholar 

  50. Maloy S. Brenner’s online encyclopedia of genetics, 2nd edition: vol 1–4. In: Maloy S, Hughes K, editors. Brenner’s encyclopedia of genetics. San Diego: Academic; 2013. p. 250–1.

    Chapter  Google Scholar 

  51. Hamamy H, Antonarakis SE, Cavalli-Sforza LL, et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report. Genet Med. 2011;13:841–7.

    Article  PubMed  Google Scholar 

  52. Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987;236:1567–70.

    Article  CAS  PubMed  Google Scholar 

  53. Alkuraya FS. Unit 6.12: Discovery of rare homozygous mutations from studies of consanguineous pedigrees. Curr Protoc Hum Genet. 2012;75:1–13.

    Google Scholar 

  54. Alkuraya FS. Autozygome decoded. Genet Med. 2010;12:765–71.

    Article  PubMed  Google Scholar 

  55. Miano MG, Jacobson SG, Carothers A, et al. Pitfalls in homozygosity mapping. Am J Hum Genet. 2000;67:1348–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bolk S, Puffenberger EG, Hudson J, Morton DH, Chakravarti A. Elevated frequency and allelic heterogeneity of congenital nephrotic syndrome, Finnish type, in the old order Mennonites. Am J Hum Genet. 1999;65(6):1785–90.[letter].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frishberg Y, Ben-Neriah Z, Suvanto M, et al. Misleading findings of homozygosity mapping resulting from three novel mutations in NPHS1 encoding nephrin in a highly inbred community. Genet Med. 2007;9:180–4.

    Article  CAS  PubMed  Google Scholar 

  58. Hildebrandt F, Heeringa SF, Ruschendorf F, et al. A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet. 2009;5:e1000353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Alkuraya FS. Homozygosity mapping: one more tool in the clinical geneticist’s toolbox. Genet Med. 2010;12:236–9.

    Article  PubMed  Google Scholar 

  60. Abu Safieh L, Aldahmesh MA, Shamseldin H, et al. Clinical and molecular characterisation of Bardet-Biedl syndrome in consanguineous populations: the power of homozygosity mapping. J Med Genet. 2010;47:236–41.

    Article  CAS  PubMed  Google Scholar 

  61. Kao WH, Klag MJ, Meoni LA, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008;40:1185–92.

    Article  CAS  PubMed  Google Scholar 

  62. Kopp JB, Smith MW, Nelson GW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40:1175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peterson LC, Rao KV, Crosson JT, White JG. Fechtner syndrome – a variant of Alport’s syndrome with leukocyte inclusions and macrothrombocytopenia. Blood. 1985;65:397–406.

    CAS  PubMed  Google Scholar 

  64. Seri M, Pecci A, Di Bari F, et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore). 2003;82:203–15.

    Google Scholar 

  65. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Friedman DJ, Pollak MR. Genetics of kidney failure and the evolving story of APOL1. J Clin Invest. 2011;121:3367–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Parsa A, Kao WH, Xie D, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369:2183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Min Jou W, Haegeman G, Ysebaert M, Fiers W. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature. 1972;237:82–8.

    Article  CAS  PubMed  Google Scholar 

  69. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith LM, Sanders JZ, Kaiser RJ, et al. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–9.

    Article  CAS  PubMed  Google Scholar 

  71. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  CAS  PubMed  Google Scholar 

  72. Loman NJ, Misra RV, Dallman TJ, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–9.

    Article  CAS  PubMed  Google Scholar 

  73. Abecasis GR, Altshuler D, Auton A, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.

    Article  PubMed  CAS  Google Scholar 

  74. Buchanan CC, Torstenson ES, Bush WS, Ritchie MD. A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data. J Am Med Inform Assoc. 2012;19:289–94.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ng PC, Levy S, Huang J, et al. Genetic variation in an individual human exome. PLoS Genet. 2008;4:e1000160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Levy S, Sutton G, Ng PC, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5:e254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bick D, Dimmock D. Whole exome and whole genome sequencing. Curr Opin Pediatr. 2011;23:594–600.

    Article  PubMed  Google Scholar 

  82. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–55.

    Article  CAS  PubMed  Google Scholar 

  83. Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6:S13–20.

    Article  CAS  PubMed  Google Scholar 

  84. Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452:872–6.

    Article  CAS  PubMed  Google Scholar 

  86. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher than you think! Genome Biol. 2011;12:125.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kitzman JO, Snyder MW, Ventura M, et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med. 2012;4:137ra76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Knob AL. Principles of genetic testing and genetic counseling for renal clinicians. Semin Nephrol. 2010;30:431–7.

    Article  PubMed  Google Scholar 

  89. Li Y, Kottgen A. Genetic investigations of kidney disease: core curriculum 2013. Am J Kidney Dis. 2013;61:832–44.

    Article  PubMed  Google Scholar 

  90. Gahl WA, Markello TC, Toro C, et al. The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases. Genet Med. 2012;14:51–9.

    Article  CAS  PubMed  Google Scholar 

  91. Jacob HJ, Abrams K, Bick DP, et al. Genomics in clinical practice: lessons from the front lines. Sci Transl Med. 2013;5:194cm5.

    Article  PubMed  Google Scholar 

  92. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369:1502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saunders CJ, Miller NA, Soden SE, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bell CJ, Dinwiddie DL, Miller NA, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3:65ra4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA. Centrosomes and cilia in human disease. Trends Genet. 2011;27:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kavanagh D, Goodship TH, Richards A. Atypical hemolytic uremic syndrome. Semin Nephrol. 2013;33:508–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Joshi S, Andersen R, Jespersen B, Rittig S. Genetics of steroid-resistant nephrotic syndrome: a review of mutation spectrum and suggested approach for genetic testing. Acta Paediatr. 2013;102:844–56.

    Article  CAS  PubMed  Google Scholar 

  98. Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant. 2012;27:3691–704.

    Article  CAS  PubMed  Google Scholar 

  99. Devuyst O, Thakker RV. Dent’s disease. Orphanet J Rare Dis. 2010;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8:467–75.

    Article  CAS  PubMed  Google Scholar 

  101. Gee HY, Otto EA, Hurd TW, et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2013;85:880–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Gallagher PG. Disorders of red cell volume regulation. Curr Opin Hematol. 2013;20:201–7.

    Article  CAS  PubMed  Google Scholar 

  103. Chaki M, Airik R, Ghosh AK, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150:533–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hurd TW, Otto EA, Mishima E, et al. Mutation of the Mg2+ transporter SLC41A1 results in a nephronophthisis-like phenotype. J Am Soc Nephrol. 2013;24:967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zaitlen N, Kraft P. Heritability in the genome-wide association era. Hum Genet. 2012;131:1655–64.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep. 2010;12:17–25.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19:212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kottgen A. Genome-wide association studies in nephrology research. Am J Kidney Dis. 2010;56:743–58.

    Article  PubMed  CAS  Google Scholar 

  109. Hussain N, Zello JA, Vasilevska-Ristovska J, et al. The rationale and design of Insight into Nephrotic Syndrome: Investigating Genes, Health and Therapeutics (INSIGHT): a prospective cohort study of childhood nephrotic syndrome. BMC Nephrol. 2013;14:25.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hirschhorn JN. Genomewide association studies – illuminating biologic pathways. N Engl J Med. 2009;360:1699–701.

    Article  CAS  PubMed  Google Scholar 

  112. Arnold D, Jones BL. Personalized medicine: a pediatric perspective. Curr Allergy Asthma Rep. 2009;9:426–32.

    Article  PubMed  Google Scholar 

  113. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.

    Article  CAS  PubMed  Google Scholar 

  114. Leeder JS. Translating pharmacogenetics and pharmacogenomics into drug development for clinical pediatrics and beyond. Drug Discov Today. 2004;9:567–73.

    Article  CAS  PubMed  Google Scholar 

  115. Staples A, Wong C. Risk factors for progression of chronic kidney disease. Curr Opin Pediatr. 2010;22:161–9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. O’Leary M, Krailo M, Anderson JR, Reaman GH. Progress in childhood cancer: 50 years of research collaboration, a report from the Children’s Oncology Group. Semin Oncol. 2008;35:484–93.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009;360:1696–8.

    Article  CAS  PubMed  Google Scholar 

  118. Kryukov GV, Shpunt A, Stamatoyannopoulos JA, Sunyaev SR. Power of deep, all-exon resequencing for discovery of human trait genes. Proc Natl Acad Sci U S A. 2009;106:3871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tennessen JA, Bigham AW, O’Connor TD, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Panoutsopoulou K, Tachmazidou I, Zeggini E. In search of low-frequency and rare variants affecting complex traits. Hum Mol Genet. 2013;22:R16–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ji W, Foo JN, O’Roak BJ, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40:592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182:845–50.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hemani G, Knott S, Haley C. An evolutionary perspective on epistasis and the missing heritability. PLoS Gene. 2013;9:e1003295.

    Article  CAS  Google Scholar 

  124. Kaprio J. Twins and the mystery of missing heritability: the contribution of gene-environment interactions. J Intern Med. 2012;272:440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109:1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Janssens AC, van Duijn CM. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet. 2008;17:R166–73.

    Article  CAS  PubMed  Google Scholar 

  127. Elens L, Bouamar R, Shuker N, Hesselink DA, van Gelder T, van Schaik RH. Clinical implementation of pharmacogenetics in kidney transplantation: CNIs in the starting blocks. Br J Clin Pharmacol. 2014;77(4):715–28.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhao W, Fakhoury M, Jacqz-Aigrain E. Developmental pharmacogenetics of immunosuppressants in pediatric organ transplantation. Ther Drug Monit. 2010;32:688–99.

    Article  CAS  PubMed  Google Scholar 

  129. Fanta S, Niemi M, Jonsson S, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics. 2008;18:77–90.

    Article  CAS  PubMed  Google Scholar 

  130. Ferraresso M, Tirelli A, Ghio L, et al. Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant. 2007;11:296–300.

    Article  CAS  PubMed  Google Scholar 

  131. Prausa SE, Fukuda T, Maseck D, et al. UGT genotype may contribute to adverse events following medication with mycophenolate mofetil in pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;85:495–500.

    Article  CAS  PubMed  Google Scholar 

  132. Zhao W, Fakhoury M, Deschenes G, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010;50:1280–91.

    Article  CAS  PubMed  Google Scholar 

  133. Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther. 2010;87:721–6.

    CAS  PubMed  Google Scholar 

  134. Eby C. Warfarin pharmacogenetics: does more accurate dosing benefit patients? Semin Thromb Hemost. 2012;38:661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vear SI, Stein CM, Ho RH. Warfarin pharmacogenomics in children. Pediatr Blood Cancer. 2013;60:1402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nielsen-Bohlman L, Panzer AM, Kindig DA. Health literacy: a prescription to end confusion. Washington, DC: National Academies Press; 2004.

    Google Scholar 

  137. Kutner M, Greenburg E, Jin Y, Paulsen C. The health literacy of America’s adults: results from the 2003 National Assessment of Adult Literacy, NCES 2006-483. Washington, DC: National Center for Education Statistics; 2006.

    Google Scholar 

  138. Lea DH, Kaphingst KA, Bowen D, Lipkus I, Hadley DW. Communicating genetic and genomic information: health literacy and numeracy considerations. Public Health Genomics. 2011;14:279–89.

    Article  CAS  PubMed  Google Scholar 

  139. Lanie AD, Jayaratne TE, Sheldon JP, et al. Exploring the public understanding of basic genetic concepts. J Genet Couns. 2004;13:305–20.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Golbeck AL, Ahlers-Schmidt CR, Paschal AM, Dismuke SE. A definition and operational framework for health numeracy. Am J Prev Med. 2005;29:375–6.

    Article  PubMed  Google Scholar 

  141. Selkirk CG, Weissman SM, Anderson A, Hulick PJ. Physicians’ preparedness for integration of genomic and pharmacogenetic testing into practice within a major healthcare system. Genet Test Mol Biomarkers. 2013;17:219–25.

    Article  PubMed  Google Scholar 

  142. Cooksey JA, Forte G, Benkendorf J, Blitzer MG. The state of the medical geneticist workforce: findings of the 2003 survey of American Board of Medical Genetics certified geneticists. Genet Med. 2005;7:439–43.

    Article  PubMed  Google Scholar 

  143. West CP, Ficalora RD. Clinician attitudes toward biostatistics. Mayo Clin Proc. 2007;82:939–43.

    Article  PubMed  Google Scholar 

  144. Weiss ST, Samet JM. An assessment of physician knowledge of epidemiology and biostatistics. J Med Educ. 1980;55:692–7.

    CAS  PubMed  Google Scholar 

  145. Wulff HR, Andersen B, Brandenhoff P, Guttler F. What do doctors know about statistics? Stat Med. 1987;6:3–10.

    Article  CAS  PubMed  Google Scholar 

  146. Rao G. Physician numeracy: essential skills for practicing evidence-based medicine. Fam Med. 2008;40:354–8.

    PubMed  Google Scholar 

  147. Rao G, Kanter SL. Physician numeracy as the basis for an evidence-based medicine curriculum. Acad Med. 2010;85:1794–9.

    Article  PubMed  Google Scholar 

  148. Patay BA, Topol EJ. The unmet need of education in genomic medicine. Am J Med. 2012;125:5–6.

    Article  PubMed  Google Scholar 

  149. Dhar SU, Alford RL, Nelson EA, Potocki L. Enhancing exposure to genetics and genomics through an innovative medical school curriculum. Genet Med. 2012;14:163–7.

    Article  PubMed  Google Scholar 

  150. Matloff E, Caplan A. Direct to confusion: lessons learned from marketing BRCA testing. Am J Bioeth. 2008;8:5–8.

    Article  PubMed  Google Scholar 

  151. Rosenfeld J, Mason CE. Pervasive sequence patents cover the entire human genome. Genome Med. 2013;5:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Klein RD. AMP v Myriad: the supreme court gives a win to personalized medicine. J Mol Diagn. 2013;15:731–2.

    Article  PubMed  Google Scholar 

  153. Graff GD, Phillips D, Lei Z, Oh S, Nottenburg C, Pardey PG. Not quite a myriad of gene patents. Nat Biotechnol. 2013;31:404–10.

    Article  CAS  PubMed  Google Scholar 

  154. Guttmacher AE, Collins FS. Realizing the promise of genomics in biomedical research. JAMA. 2005;294:1399–402.

    Article  CAS  PubMed  Google Scholar 

  155. Janssens AC. Is the time right for translation research in genomics? Eur J Epidemiol. 2008;23:707–10.

    Article  PubMed  Google Scholar 

  156. Wade CH, McBride CM, Kardia SL, Brody LC. Considerations for designing a prototype genetic test for use in translational research. Public Health Genomics. 2010;13:155–65.

    Article  CAS  PubMed  Google Scholar 

  157. Lucassen A, Parker M. Revealing false paternity: some ethical considerations. Lancet. 2001;357:1033–5.

    Article  CAS  PubMed  Google Scholar 

  158. Schroder NM. The dilemma of unintentional discovery of misattributed paternity in living kidney donors and recipients. Curr Opin Organ Transplant. 2009;14:196–200.

    Article  PubMed  Google Scholar 

  159. Macintyre S, Sooman A. Non-paternity and prenatal genetic screening. Lancet. 1991;338:869–71.

    Article  CAS  PubMed  Google Scholar 

  160. Gjertson DW, Brenner CH, Baur MP, et al. ISFG: recommendations on biostatistics in paternity testing. Forensic Sci Int Genet. 2007;1:223–31.

    Article  PubMed  Google Scholar 

  161. Ross LF. Disclosing misattributed paternity. Bioethics. 1996;10:114–30.

    Article  PubMed  Google Scholar 

  162. Wertz DC, Fletcher JC. Ethics and medical genetics in the United States: a national survey. Am J Med Genet. 1988;29:815–27.

    Article  CAS  PubMed  Google Scholar 

  163. Wertz DC, Fletcher JC, Mulvihill JJ. Medical geneticists confront ethical dilemmas: cross-cultural comparisons among 18 nations. Am J Hum Genet. 1990;46:1200–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Andrews LB, Fullarton JE, Holtzman NA, Motulsky AG, editors. Assessing genetic risks: implications for health and social policy. Washington, DC: National Academies Press; 1994. p. 311.

    Google Scholar 

  165. Wolf SM, Crock BN, Van Ness B, et al. Managing incidental findings and research results in genomic research involving biobanks and archived data sets. Genet Med. 2012;14:361–84.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dorschner MO, Amendola LM, Turner EH, et al. Actionable, pathogenic incidental findings in 1,000 participants’ exomes. Am J Hum Genet. 2013;93:631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hayeems RZ, Miller FA, Li L, Bytautas JP. Not so simple: a quasi-experimental study of how researchers adjudicate genetic research results. Eur J Hum Genet. 2011;19:740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Eguale T, Bartlett G, Tamblyn R. Rare visible disorders/diseases as individually identifiable health information. AMIA Annu Symp Proc. 2005:947.

    Google Scholar 

  170. Kaye J. The tension between data sharing and the protection of privacy in genomics research. Annu Rev Genomics Hum Genet. 2012;13:415–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lin Z, Owen AB, Altman RB. Genetics. Genomic research and human subject privacy. Science. 2004;305:183.

    Article  CAS  PubMed  Google Scholar 

  172. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal genomes by surname inference. Science. 2013;339:321–4.

    Article  CAS  PubMed  Google Scholar 

  173. Fox S. After Dr Google: peer-to-peer health care. Pediatrics. 2013;131 Suppl 4:S224–5.

    Article  PubMed  Google Scholar 

  174. Rodriguez LL, Brooks LD, Greenberg JH, Green ED. Research ethics. The complexities of genomic identifiability. Science. 2013;339:275–6.

    Article  CAS  PubMed  Google Scholar 

  175. Collins FS, Mckusick VA. Implications of the Human Genome Project for medical science. JAMA. 2001;285:540–4.

    Article  CAS  PubMed  Google Scholar 

  176. Rothstein MA, Anderlik MR. What is genetic discrimination, and when and how can it be prevented? Genet Med. 2001;3:354–8.

    Article  CAS  PubMed  Google Scholar 

  177. Hudson KL, Rothenberg KH, Andrews LB, Kahn MJ, Collins FS. Genetic discrimination and health insurance: an urgent need for reform. Science. 1995;270:391–3.

    Article  CAS  PubMed  Google Scholar 

  178. Rothenberg K, Fuller B, Rothstein M, et al. Genetic information and the workplace: legislative approaches and policy changes. Science. 1997;275:1755–7.

    Article  CAS  PubMed  Google Scholar 

  179. Van Hoyweghen I, Horstman K. European practices of genetic information and insurance: lessons for the Genetic Information Nondiscrimination Act. JAMA. 2008;300:326–7.

    Article  PubMed  Google Scholar 

  180. Hudson KL, Holohan MK, Collins FS. Keeping pace with the times – the Genetic Information Nondiscrimination Act of 2008. N Engl J Med. 2008;358:2661–3.

    Article  CAS  PubMed  Google Scholar 

  181. Bombard Y, Veenstra G, Friedman JM, et al. Perceptions of genetic discrimination among people at risk for Huntington’s disease: a cross sectional survey. BMJ. 2009;338:b2175.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Murashige N, Tanimoto T, Kusumi E. Fear of genetic discrimination in Japan. Lancet. 2012;380:730.

    Article  PubMed  Google Scholar 

  183. Taylor S, Treloar S, Barlow-Stewart K, Stranger M, Otlowski M. Investigating genetic discrimination in Australia: a large-scale survey of clinical genetics clients. Clin Genet. 2008;74:20–30.

    Article  CAS  PubMed  Google Scholar 

  184. Anon. What’s brewing in genetic testing. Nat Genet. 2002;32:553–54.

    Google Scholar 

  185. Hudson K, Javitt G, Burke W, Byers P. ASHG Statement* on direct-to-consumer genetic testing in the United States. Obstet Gynecol. 2007;110:1392–5.

    Article  PubMed  Google Scholar 

  186. McCarthy M. FDA halts sale of genetic test sold to consumers. BMJ. 2013;347:f7126.

    Article  PubMed  Google Scholar 

  187. Borry P, van Hellemondt RE, Sprumont D, et al. Legislation on direct-to-consumer genetic testing in seven European countries. Eur J Hum Genet. 2012;20:715–21.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bloss CS, Darst BF, Topol EJ, Schork NJ. Direct-to-consumer personalized genomic testing. Hum Mol Genet. 2011;20:R132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Caulfield T, McGuire AL. Direct-to-consumer genetic testing: perceptions, problems, and policy responses. Annu Rev Med. 2012;63:23–33.

    Article  CAS  PubMed  Google Scholar 

  190. Howard HC, Avard D, Borry P. Are the kids really all right? Direct-to-consumer genetic testing in children: are company policies clashing with professional norms? Eur J Hum Genet. 2011;19:1122–6.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Borry P, Fryns JP, Schotsmans P, Dierickx K. Carrier testing in minors: a systematic review of guidelines and position papers. Eur J Hum Genet. 2006;14:133–8.

    Article  PubMed  Google Scholar 

  192. Tracy EE. Are doctors prepared for direct-to-consumer advertising of genetics tests? Obstet Gynecol. 2007;110:1389–91.

    Article  PubMed  Google Scholar 

  193. McGuire AL, Burke W. An unwelcome side effect of direct-to-consumer personal genome testing: raiding the medical commons. JAMA. 2008;300:2669–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aoife Waters or Mathieu Lemaire .

Editor information

Editors and Affiliations

Glossary of Terms

Alleles

Alternative forms of a gene at the same locus

Alternative splicing

Formation of diverse mRNAs through differential splicing of an mRNA precursor

Autosome

Any chromosome (1–22) other than the sex chromosomes X and Y

cDNA, complementary DNA

DNA sequence that contains only exonic sequences and was made from an mRNA molecule

Centimorgan

Length of DNA that on average has 1 crossover per 100 gametes

Cis

Location of two genes/changes on the same chromosome

Codon

Three consecutive bases/nucleotides in DNA/RNA that specify an amino acid

Compound heterozygote

Individual with two different mutant alleles at a locus

Consanguineous

Mating between individuals who share at least one common ancestor

Conservation

Sequence similarity for genes present in two distinct organisms or for gene families; can be detected by measuring the sequence similarity at the nucleotide (DNA or RNA) or amino acid (protein) level

Crossover

Exchange of genetic material between homologous chromosomes during meiosis

Digenic inheritance

Two genes interacting to produce a disease phenotype

Diploid

Chromosome number of somatic cells

Domain

Segment of a protein associated with a specialized structure or function

Dominant

Trait expressed in the heterozygote

Downstream

Sequence that is distal or 3′ from the reference point

Empiric risk

Recurrence risk based on experience rather than calculation

Epigenetics

Term describing nonmutational phenomena (e.g., methylation and acetylation) that modify the expression of a gene

Euchromatin

Majority of nuclear DNA that remains relatively unfolded during most of the cell cycle and is therefore accessible to transcriptional machinery

Exon

Segment of a gene (usually protein coding) that remains after splicing of the primary RNA transcript

Expressivity

Variation in the severity of a genetic trait

Genotype

Genetic constitution of the organism; usually refers to a particular pair of alleles the individual carries at a given locus of the genome

Germline

Cell lineage resulting in eggs or sperm

Germline mutation

Any detectable, heritable variation in the lineage of germ cells transmitted to offspring while those in somatic cells are not

Gonadal (germline) mosaicism

Occurrence of more than one genetic constitution in the precursor cells of eggs or sperm

Haplotype

Group of nearby, closely linked alleles inherited together as a unit

Heterozygote

Person with one normal and one mutant allele at a given locus on a pair of homologous chromosomes

Homozygote

Person with identical alleles at a given locus on a pair of homologous chromosomes

Imprinting

Parent-specific expression or repression of genes or chromosomes in offspring

Intron

Segment of a gene transcribed into the primary RNA transcript but excised during exon splicing, thus does not code for a protein

Isodisomy, uniparental

Inheritance of two copies of one homologue of a chromosome from one parent, with loss of the corresponding homologue from the other parent

Karyotype

Classified chromosome complement of an individual or a cell

Lyon hypothesis (X inactivation)

Principle of inactivation of one of the two X chromosomes in normal female cells (first proposed by Dr. Mary Lyon)

Mendelian

Following patterns of inheritance originally proposed by Gregor Mendel

Monogenic disorder

Caused by mutations in a single gene

Mosaicism

Occurrence of more than one genetic constitution arising in an individual after fertilization

Multifactorial disorder

Caused by the interaction of multiple genetic and environmental factors

Mutation

Change from the normal to an altered form of a particular gene that has harmful; pathogenic effects

Oligogenic inheritance

Character that is determined by a small number of genes acting together

Penetrance

Frequency with which a genotype manifests itself in a given phenotype

Phenotype

Visible expression of the action of a particular gene; the clinical picture resulting from a genetic disorder

Pleiotropy

Multiple effects of a single gene

Polymerase chain reaction (PCR)

Amplification of DNA using a specific technique that allows analysis of minute original amounts of DNA

Polymorphism

Usually used for any sequence variant present at a frequency greater than 1 % in a population

Recessive

A trait expressed only when both alleles at a given genetic locus are altered

Recombination

Separation of alleles that are close together on the same chromosome by crossing over of homologous chromosomes at meiosis

SNP (single nucleotide polymorphism)

Usually used for any sequence variant present at a frequency greater than 1 % in a population

Somatic

Involving the body cells rather than the germline

Syndrome, genetic

Nonrandom combination of features

Teratogen

Any agent causing congenital malformations

Trans

Location of two genes/changes on opposite chromosomes of a pair

Transcription

Production of mRNA from the DNA template

Translation

The process by which protein is synthesized from an mRNA sequence

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waters, A., Lemaire, M. (2016). Genetic Diagnosis of Renal Diseases: Basic Concepts and Testing. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics