Skip to main content

Polygonal Billiards with Strongly Contractive Reflection Laws: A Review of Some Hyperbolic Properties

  • Conference paper
  • First Online:
Difference Equations, Discrete Dynamical Systems and Applications (ICDEA 2012)

Abstract

We provide an overview of recent results concerning the dynamics of polygonal billiards with strongly contractive reflection laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altmann, E.G., Del Magno, G., Hentschel, M.: Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics. Europhys. Lett. EPL 84, 10008–10013 (2008)

    Article  MathSciNet  Google Scholar 

  2. Arroyo, A., Markarian, R., Sanders, D.P.: Bifurcations of periodic and chaotic attractors in pinball billiards with focusing boundaries. Nonlinearity 22, 1499–1522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arroyo, A., Markarian, R., Sanders, D.P.: Structure and evolution of strange attractors in non-elastic triangular billiards. Chaos 22, 026107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birkhoff, G.: Dynamical Systems, vol. 9. American Mathematical Society Colloquium Publication. American Mathematical Society, Providence (1927)

    MATH  Google Scholar 

  5. Boshernitzan, M., Galperin, G., Krüger, T., Troubetzkoy, S.: Periodic billiard orbits are dense in rational polygons. Trans. Am. Math. Soc. 350, 3523–3535 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunimovich., L.: On the ergodic properties of certain billiards. Anal. Appl. 8, 254–255 (1974)

    Google Scholar 

  7. Bunimovich., L. Billiards and other hyperbolic systems. In: Encyclopedia of Mathematical Sciences, vol. 100, pp. 192–233. Springer, New York (2000)

    Google Scholar 

  8. Chernov, N.I., Markarian, R.: Chaotic billiards, vol. 127. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  9. Donnay, V.: Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys. 141, 225–257 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Galperin, G.A., Stepin, A.M.: Vorobets, Ya.B.: Periodic billiard trajectories in polygons: generating mechanisms. Russ. Math. Surv. 47, 5–80 (1992)

    Article  MathSciNet  Google Scholar 

  11. Gutkin, E.: Billiards in polygons. Physica D 19, 311–333 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gutkin, E.: Billiards in polygons: survey of recent results. J. Stat. Phys. 83, 7–26 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutkin, E.: Billiard dynamics: an updated survey with the emphasis on open problems. Chaos 22, 026116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galperin, G., Krüger, T., Troubetzkoy, S.: Local instability of orbits in polygonal and polyhedral billiards. Commun. Math. Phys. 169, 463–473 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katok, A., Strelcyn. J.-M-.: Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, vol. 1222, Lecture Notes in Mathematics. Springer, Heidelberg (1986)

    Google Scholar 

  16. Katok, A., Zemlyakov, A.: Topological transitivity of billiards in polygons. Math. Notes 18, 760–764 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kerckhoff, S., Masur, H., Smillie, J.: Ergodicity of billiard flows and quadratic differentials. Ann. Math. 124, 293–311 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Del Magno, G.: Lopes Dias, J., Duarte, P., Gaivão, J. P., Pinheiro, D.: Chaos in the square billiard with a modified reflection law. Chaos 22, 026106 (2012)

    Article  MathSciNet  Google Scholar 

  19. Del Magno, G.: Lopes Dias, J., Duarte, P., Gaivão, J.P., Pinheiro, D.: SRB Measures for Polygonal Billiards with Contracting Reflection Laws. Commun. Math. Phys. 329, 687–723 (2014)

    Article  Google Scholar 

  20. Markarian, R.: Billiards with Pesin region of measure one. Commun. Math. Phys. 118, 87–97 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Markarian, R., Pujals, E.J., Sambarino, M.: Pinball billiards with dominated splitting. Ergod. Theory Dyn. Syst. 30, 1757–1786 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Masur, H.: Closed trajectories for quadratic differentials with an application to billiards. Duke Math. J. 53, 307–313 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pesin, Ya.B.: Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Theory Dyn. Syst. 12, 123–151 (1992)

    Google Scholar 

  24. Sataev, E.A.: Invariant measures for hyperbolic mappings with singularities. Russ. Math. Surv. 47, 191–251 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sinai, Y.: On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Sov. Math. Dokl. 4, 1818–1822 (1963)

    MathSciNet  Google Scholar 

  26. Sinai, Y.: Dynamical systems with elastic reflections: ergodic properties of dispersing billiards. Usp. Mat. Nauk. 25, 141–192 (1970)

    MathSciNet  MATH  Google Scholar 

  27. Smillie, J.: The dynamics of billiard flows in rational polygons. In: Encyclopedia of Mathematical Sciences, vol. 100, pp. 360–382. Springer, New York (2000)

    Google Scholar 

  28. Szasz, S. (ed.): Hard Ball Systems and the Lorentz Gas. Encyclopedia of Mathematical, vol. 101. Springer, Berlin (2000)

    Google Scholar 

  29. Tabachnikov, S.: Geometry and Billiards American Mathematical Society. Providence, RI (2005)

    MATH  Google Scholar 

  30. Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105, 391–414 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors were supported by Fundação para a Ciência e a Tecnologia through the Program POCI 2010 and the Project “Randomness in Deterministic Dynamical Systems and Applications” (PTDC-MAT-105448-2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Lopes Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Del Magno, G., Lopes Dias, J., Duarte, P., Gaivão, J.P., Pinheiro, D. (2016). Polygonal Billiards with Strongly Contractive Reflection Laws: A Review of Some Hyperbolic Properties. In: Alsedà i Soler, L., Cushing, J., Elaydi, S., Pinto, A. (eds) Difference Equations, Discrete Dynamical Systems and Applications. ICDEA 2012. Springer Proceedings in Mathematics & Statistics, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52927-0_14

Download citation

Publish with us

Policies and ethics