Skip to main content

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9803))

  • 583 Accesses

Abstract

We study semantic equivalence of multivariate graph polynomials via their distinctive power introduced in (Makowsky, Ravve, Blanchard 2014) under the name of d.p.-equivalence. There we studied only univariate graph polynomials. In this paper we extend our study to multivariate graph polynomials. We use the characterization from the previous paper of d.p.-equivalence of two graph polynomials in terms of computing their respective coefficients. To make our graph polynomials combinatorially meaningful we require them to be definable in Second Order Logic \(\ SOL\). The location of zeros in the multivariate case is captured by various versions of halfplane properties, also known as stability or Hurwitz stability. Our main application shows that every multivariate \(\mathrm {SOL}\)-definable graph polynomial \(P(G;X_1, X_2, ... X_k)\) is d.p.-equivalent to a substitution instance of a stable (Hurwitz stable) \(\mathrm {SOL}\)-definable graph polynomial \(Q(G;Y, X_1, X_2, ... X_k)\). In other words, two d.p.-equivalent \(\mathrm {SOL}\)-definable multivariate graph polynomials can also have very different behavior concerning their halfplane properties.

J.A. Makowsky—Partially supported by a grant of Technion Research Authority. Work done in part while the author was visiting the Simons Institute for the Theory of Computing in Spring 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many are even definable in Monadic Second Order Logic \(\mathrm {MSOL}\), [35]. The exceptions are in [43]. The algorithmic advantages of \(\mathrm {MSOL}\)-definability, [14] are of no importance in this paper.

  2. 2.

    A univariate polynomial is monic if the leading coefficient equals 1.

  3. 3.

    A sequence of numbers \(a_i: i \le m\) is unimodal if there is \(k \le m\) such that \(a_i \le a_j\) for \(i<j < k\) and \(a_i \ge a_j\) for \( k \le i <j \le m\).

  4. 4.

    In engineering and stability theory, a square matrix A is called stable matrix (or sometimes Hurwitz matrix) if every eigenvalue of A has strictly negative real part. These matrices were first studied in the landmark paper [28] in 1895. The Hurwitz stability matrix plays a crucial part in control theory. A system is stable if its control matrix is a Hurwitz matrix. The negative real components of the eigenvalues of the matrix represent negative feedback. Similarly, a system is inherently unstable if any of the eigenvalues have positive real components, representing positive feedback. In the engineering literature, one also considers Schur-stable univariate polynomials, which are polynomials such that all their roots are in the open unit disk, see for example [55].

  5. 5.

    There is a polynomial time computable function \(F: {\mathbb Z}[\mathbf {X}] \rightarrow {\mathbb Z}[Y, \mathbf {X}]\) such that for all graphs G we have \(F(P(G;\mathbf {X})) = Q^s(G;Y,\mathbf {X})\).

References

  1. Alon, N., Milman, V.: \(\lambda \) 1, isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory Ser. B 38(1), 73–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anari, N., Gharan, S.O., Rezaei, A.: Monte carlo markov chains for sampling strongly rayleigh distributions and determinantal point processes (2016). arXiv preprint arXiv:1602.05242

  3. Averbouch, I., Godlin, B., Makowsky, J.A.: An extension of the bivariate chromatic polynomial. Eur. J. Comb. 31(1), 1–17 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balaban, A.T.: Solved and unsolved problems in chemical graph theory. quo vadis, graph theory? Ann. Discrete Math. 35, 109–126 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balaban, A.T.: Chemical graphs: looking back and glimpsing ahead. J. Chem. Inf. Comput. Sci. 35, 339–350 (1995)

    Article  Google Scholar 

  6. Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Ann. Math. 14, 42–46 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  8. Borcea, J., Brändén, P., et al.: Applications of stable polynomials to mixed determinants: johnson’s conjectures, unimodality, and symmetrized fischer products. Duke Math. J. 143(2), 205–223 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borcea, J., Brändén, P., Liggett, T.: Negative dependence and the geometry of polynomials. J. Am. Math. Soc. 22(2), 521–567 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brändén, P.: Polynomials with the half-plane property and matroid theory. Adv. Math. 216(1), 302–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Universitext. Springer, New York (2012)

    Book  MATH  Google Scholar 

  12. Brown, J.I., Hickman, C.A., Nowakowski, R.J.: On the location of roots of independence polynomials. J. Algebraic Comb. 19(3), 273–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choe, Y.B., Oxley, J.G., Sokal, A.D., Wagner, D.G.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32(1), 88–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Appl. Math. 108(1–2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Csikvári, P., Oboudi, M.R.: On the roots of edge cover polynomials of graphs. Eur. J. Comb. 32(8), 1407–1416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs, 3rd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  17. Dong, F.M., Koh, K.M., Teo, K.L., Polynomials, C.: Chromaticity of Graphs. World Scientific, Singapore (2005)

    Book  Google Scholar 

  18. Ellis-Monaghan, J.A., Merino, C.: Graph polynomials and their applications i: the tutte polynomial. In: Dehmer, M. (ed.) Structural Analysis of Complex Networks, pp. 219–255. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Fischer, E., Kotek, T., Makowsky, J.A.: Application of logic to combinatorial sequences and their recurrence relations. In: Grohe, M., Makowsky, J.A. (eds.) Model Theoretic Methods in Finite Combinatorics (Contemporary Mathematics), vol. 558, pp. 1–42. American Mathematical Society, Providence (2011)

    Chapter  Google Scholar 

  20. Godlin, B., Katz, E., Makowsky, J.A.: Graph polynomials: from recursive definitions to subset expansion formulas. J. Log. Comput. 22(2), 237–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Godsil, C.D., Gutman, I.: On the theory of the matching polynomial. J. Graph Theory 5, 137–144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldwurm, M., Santini, M.: Clique polynomials have a unique root of smallest modulus. Inf. Process. Lett. 75(3), 127–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gurvits, L.: Hyperbolic polynomials approach to van der waerden/schrijver-valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 417–426. ACM (2006)

    Google Scholar 

  24. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60(5), 654–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirasawa, M., Murasugi, K.: Various stabilities of the alexander polynomials of knots and links (2013). arXiv preprint arXiv:1307.1578

  26. Hoede, C., Li, X.: Clique polynomials and independent set polynomials of graphs. Discrete Math. 125, 219–228 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoshino, R.: Independence polynomials of circulant graphs. Ph.D. thesis, Dalhousie University, Halifax, Nova Scotia (2007)

    Google Scholar 

  28. Hurwitz, A.: Ueber die bedingungen, unter welchen eine gleichung nur wurzeln mit negativen reellen theilen besitzt. Math. Ann. 46(2), 273–284 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jaeger, F.: Tutte polynomials and link polynomials. Proc. Am. Math. Soc. 103, 647–654 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kotek, T.: Definability of combinatorial functions: Ph.D. thesis, Technion - Israel Institute of Technology, Haifa, Israel, March 2012

    Google Scholar 

  31. Kotek, T., Makowsky, J.A., Zilber, B.: On counting generalized colorings. In: Grohe, M., Makowsky, J.A. (eds.) Model Theoretic Methods in Finite Combinatorics (Contemporary Mathematics), vol. 558, pp. 207–242. American Mathematical Society, Providence (2011)

    Chapter  Google Scholar 

  32. Lovász, L., Plummer, M.D., Theory, M.: Matching Theory, Annals of Discrete Mathematics, vol. 29. North Holland Publishing, North Holland (1986)

    Google Scholar 

  33. Seymour, P., Chudnovsky, M.: The roots of the independence polynomial of a clawfree graph. J. Comb. Theory Ser. B 97(3), 350–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl. Log. 126(1–3), 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Makowsky, J.A.: From a zoo to a zoology: towards a general theory of graph polynomials. Theory Comput. Syst. 43, 542–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Makowsky, J.A., Kotek, T., Ravve, E.V.: A computational framework for the study of partition functions and graph polynomials. In: Proceedings of the 12th Asian Logic Conference 2011, pp. 210–230. World Scientific (2013)

    Google Scholar 

  37. Makowsky, J.A., Ravve, E.V.: Logical methods in combinatorics, Lecture 11. Course given in 2009 under the number 236605, Advanced Topics, Lecture Notes. http://www.cs.technion.ac.il/janos/

  38. Makowsky, J.A., Ravve, E.V.: On the location of roots of graph polynomials. Electron. Notes Discrete Math. 43, 201–206 (2013)

    Article  Google Scholar 

  39. Makowsky, J.A., Ravve, E.V.: On sequences of polynomials arising from graph invariants, preprint (2016)

    Google Scholar 

  40. Makowsky, J.A., Ravve, E.V., Blanchard, N.K.: On the location of roots of graph polynomials. Eur. J. Comb. 41, 1–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Merino, C., Noble, S.D.: The equivalence of two graph polynomials and a symmetric function. Comb. Probab. Comput. 18(4), 601–615 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nešetřil, J., Winkler, P. (eds.): Graphs, Morphisms and Statistical Physics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 63. AMS, New York (2004)

    Google Scholar 

  43. Noble, S.D., Welsh, D.J.A.: A weighted graph polynomial from chromatic invariants of knots. Ann. Inst. Fourier Grenoble 49, 1057–1087 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pemantle, R.: Hyperbolicity and stable polynomials in combinatorics and probability (2012). arXiv preprint arXiv:1210.3231

  45. Sinclair, A., Srivastava, P.: Lee-Yang theorems and the complexity of computing averages. In: Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pp. 625–634. ACM (2013)

    Google Scholar 

  46. Sokal, A.D.: Bounds on the complex zeros of (di)chromatic polynomials and potts-model partition functions. Comb. Prob. Comput. 10(1), 41–77 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Comb. Prob. Comput. 13(2), 221–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Survey in Combinatorics, 2005. London Mathematical Society Lecture Notes, vol. 327, pp. 173–226 (2005)

    Google Scholar 

  49. Trinajstić, N.: Chemical Graph Theory, 2nd edn. CRC Press, Boca Raton (1992)

    Google Scholar 

  50. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vishnoi, N.K.: A permanent approach to the traveling salesman problem. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 76–80. IEEE (2012)

    Google Scholar 

  52. Vishnoi, N.K.: Zeros of polynomials and their applications to theory: a primer, Preprint. Microsoft Research, Bangalore (2013)

    Google Scholar 

  53. Wagner, D.G.: Multivariate stable polynomials: theory and applications. Bull. Am. Math. Soc. 48(1), 53–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wagner, D.G., Wei, Y.: A criterion for the half-plane property. Discrete Math. 309(6), 1385–1390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, K., Michel, A.N., Liu, D.: Necessary and sufficient conditions for the hurwitz and schur stability of interval matrices. IEEE Trans. Autom. Control 39(6), 1251–1255 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wilf, H.S.: Which polynomials are chromatic. In: Proceedings of Colloquium Combinatorial Theory, Rome (1973)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Petter Brändén for guiding us to the literature of stable polynomials, and Jason Brown and four anonymous readers of an earlier version of this paper for valuable comments. Thanks also to Jingcheng Lin for pointing out the references [2, 9]. We want to acknowledge that some of the definitions and examples were taken verbatim from our [40]. D.p-equivalence was first characterized in [37].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann A. Makowsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makowsky, J.A., Ravve, E.V. (2016). Semantic Equivalence of Graph Polynomials Definable in Second Order Logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2016. Lecture Notes in Computer Science(), vol 9803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52921-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52921-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52920-1

  • Online ISBN: 978-3-662-52921-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics