Skip to main content

A Multi-type Calculus for Inquisitive Logic

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9803)

Abstract

In this paper, we define a multi-type calculus for inquisitive logic, which is sound, complete and enjoys Belnap-style cut-elimination and subformula property. Inquisitive logic is the logic of inquisitive semantics, a semantic framework developed by Groenendijk, Roelofsen and Ciardelli which captures both assertions and questions in natural language. Inquisitive logic adopts the so-called support semantics (also known as team semantics). The Hilbert-style presentation of inquisitive logic is not closed under uniform substitution, and some axioms are sound only for a certain subclass of formulas, called flat formulas. This and other features make the quest for analytic calculi for this logic not straightforward. We develop a certain algebraic and order-theoretic analysis of the team semantics, which provides the guidelines for the design of a multi-type environment accounting for two domains of interpretation, for flat and for general formulas, as well as for their interaction. This multi-type environment in its turn provides the semantic environment for the multi-type calculus for inquisitive logic we introduce in this paper.

Keywords

  • Inquisitive Logic
  • Team Semantics
  • Order-theoretic Analysis
  • Hilbert-style Presentation
  • Semantic Support

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-52921-8_14
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-52921-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Notes

  1. 1.

    Recall that \(\mathsf {L}\) is an intermediate logic if \(\mathbf {IPL} \subseteq \mathsf {L}\subseteq \mathbf {CPL} \).

  2. 2.

    A Heyting algebra is perfect if it is complete, completely distributive and completely join-generated by its completely join-prime elements. Equivalently, any perfect algebra can be characterized up to isomorphism as the complex algebra of some partially ordered set.

  3. 3.

    We follow the notational conventions introduced in [10], according to which each structural connective in the upper row of the synoptic tables is interpreted as the logical connective(s) in the two slots below it in the lower row. Specifically, each of its occurrences in antecedent (resp. succedent) position is interpreted as the logical connective in the left-hand (resp. right-hand) slot. Hence, for instance, the structural symbol \(\sqsupset \) is interpreted as classical implication when occurring in succedent position and as classical disimplication \(\mapsto \) (i.e. \(\alpha \mapsto \beta : = {\sim } \alpha \sqcap \beta \)) when occurring in antecedent position.

  4. 4.

    A sequent \(x \vdash y\) is type-uniform if x and y are of the same type.

References

  1. Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Belnap, N.: Display logic. J. Philos. Logic 11, 375–417 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Ciardelli, I.: Questions in Logic. Ph.D. thesis, University of Amsterdam (2016)

    Google Scholar 

  4. Ciardelli, I.: Dependency as question entailment. In: Vollmer, H., Abramsky, S., Kontinen, J., Väänänen, J. (eds.) Dependence Logic: Theory and Application, Progress in Computer Science and Applied Logic. Birkhauser (2016, to appear)

    Google Scholar 

  5. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Logic 40(1), 55–94 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for propositional dynamic logic. J. Logic Comput. exu064v1-exu064 (2014). Special Issue on Substructural Logic and Information Dynamics

    Google Scholar 

  7. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A multi-type display calculus for dynamic epistemic logic. J. Logic Comput. exu068v1-exu068 (2014). Special Issue on Substructural Logic and Information Dynamics

    Google Scholar 

  8. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent calculi. In: Zawidzki, M., Indrzejczak, A., Kaczmarek, J. (eds.) Trends in Logic XIII, pp. 81–93. Lodź University Press, Łódź (2014)

    Google Scholar 

  9. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A proof-theoretic semantic analysis of dynamic epistemic logic. J. Logic Comput. exu063v2-exu063 (2015). Special Issue on Substructural Logic and Information Dynamics

    Google Scholar 

  10. Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. In: Huang, H., Grossi, D., Roy, O. (eds.) LORI. LNCS, vol. 8196, pp. 135–148. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  11. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Logic Comput. (forthcoming)

    Google Scholar 

  12. Groenendijk, J.: Inquisitive semantics: two possibilities for disjunction. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol. 5422, pp. 80–94. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  13. Groenendijk, J., Roelofsen, F.: Inquisitive semantics and pragmatics. In: Larrazabal, J.M., Zubeldia, L. (eds.) Meaning, Content, and Argument: Proceedings of the ILCLI International Workshop on Semantics, Pragmatics, and Rhetoric, pp. 41–72. University of the Basque Country Publication Service, May 2009

    Google Scholar 

  14. Hodges, W.: Compositional semantics for a language of imperfect information. Logic J. IGPL 5, 539–563 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, A., Salomaa, A. (eds.) Structures in Logic and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht. LNCS, vol. 1261, pp. 51–65. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  16. Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung 3, 74–78 (1957)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Maksimova, L.: On maximal intermediate logics with the disjunction property. Stud. Logica 45(1), 69–75 (1986)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Mascarenhas, S.: Inquisitive semantics and logic. Master’s thesis, University of Amsterdam (2009)

    Google Scholar 

  19. Medvedev, J.T.: Finite problems. Sov. Math. Dokl. 3(1), 227–230 (1962)

    MATH  Google Scholar 

  20. Roelofsen, F.: Algebraic foundations for the semantic treatment of inquisitive content. Synthese 190, 79–102 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. Sano, K.: Sound and complete tree-sequent calculus for inquisitive logic. In: The Sixteenth Workshop on Logic, Language, Information, and Computation (2009)

    Google Scholar 

  22. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)

    CrossRef  MATH  Google Scholar 

  23. Yang, F.: On Extensions and Variants of Dependence Logic. Ph.D. thesis, University of Helsinki (2014)

    Google Scholar 

  24. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic 167(7), 557–589 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

This research has been made possible by the NWO Vidi grant 016.138.314, by the NWO Aspasia grant 015.008.054, and by a Delft Technology Fellowship awarded in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Frittella .

Editor information

Editors and Affiliations

Appendices

Appendix I

The derivation of (A3) \(({\downarrow } \alpha \rightarrow (A \vee B)) \rightarrow ({\downarrow } \alpha \rightarrow A) \vee ({\downarrow } \alpha \rightarrow B)\):

figure w

Appendix II

The derivation of (A4) \(\lnot \lnot {\downarrow } \alpha \rightarrow {\downarrow } \alpha \):

figure x

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frittella, S., Greco, G., Palmigiano, A., Yang, F. (2016). A Multi-type Calculus for Inquisitive Logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2016. Lecture Notes in Computer Science(), vol 9803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52921-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52921-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52920-1

  • Online ISBN: 978-3-662-52921-8

  • eBook Packages: Computer ScienceComputer Science (R0)