Skip to main content

Characterization of Magnetism in Gold Nanoparticles

  • Chapter
  • First Online:
  • 1768 Accesses

Abstract

Gold nanoparticles have been discovered to possess peculiar properties not found in the bulk metal, such as optical, catalytic, or magnetic properties. Whereas some of the properties are well understood, such as the optical ones, the magnetic properties are much more mysterious. This chapter is devoted to the magnetic characterization of nanoparticulate gold samples, using a variety of techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Trudel S (2011) Unexpected magnetism in gold nanostructures: making gold even more attractive. Gold Bull 44:3

    Article  Google Scholar 

  2. van Rhee PG, Zijlstra P, Verhagen TGA, Aarts J, Katsnelson MI, Maan JC, Orrit M, Christianen PCM (2013) Giant magnetic susceptibility of gold nanorods detected by magnetic alignment. Phys Rev Lett 111:127202

    Article  Google Scholar 

  3. Nealon GL, Donnio B, Greget R, Kappler J-P, Terazzi E, Gallani J-L (2012) Magnetism in gold nanoparticles. Nanoscale 4:5244

    Article  Google Scholar 

  4. Pereira LMC, Araujo JP, Van Bael MJ, Temst K, Vantomme A (2011) Practical limits for detection of ferromagnetism using highly sensitive magnetometry techniques. J Phys D Appl Phys 44:215001

    Article  Google Scholar 

  5. Clarke J (1994) SQUIDs. Sci Am 271:2, p 46

    Article  Google Scholar 

  6. Hori H, Teranishi T, Nakae Y, Seino Y, Miyake M, Yamada S (1999) Anomalous magnetic polarization effect of Pd and Au nano-particles. Phys Lett A 263:406

    Article  Google Scholar 

  7. Kowlgi K, Zhang L, Picken S, Koper G (2012) One paper has reported a vanishing of the ferromagnetism for 15 nm gold nanoparticles at the impressive temperature of 850K and found a surprising critical exponent of 0.78 for the magnetization below Tc. Anomalous magnetism in noble metal (nano)particles. Coll Surf A 413:248

    Google Scholar 

  8. Donnio B, García-Vázquez P, Gallani J-L, Guillon D, Terazzi E (2007) Dendronized ferromagnetic gold nanoparticles self-organized in a thermotropic cubic phase. Adv Mater 19:3534

    Article  Google Scholar 

  9. Muñoz-Márquez MA, Guerrero E, Fernandez A, Crespo P, Hernando A, Lucena R, Conesa JC (2010) Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles. J Nanopart Res 12:1307

    Article  Google Scholar 

  10. Guerrero E, Muñoz-Márquez MA, Fernández A, Crespo P, Hernando A, Lucena R, Conesa JC (2010) Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles. J Appl Phys 107:064303

    Article  Google Scholar 

  11. Lucarini M, Pasquato L (2010) ESR spectroscopy as a tool to investigate the properties of self-assembled monolayers protecting gold nanoparticles. Nanoscale 2:668

    Article  Google Scholar 

  12. Chechik V, Wellsted HJ, Korte A, Gilbert BC, Caldaru H, Ionita P, Caragheorgheopol A (2004) Spin-labelled Au nanoparticles. Faraday Discuss 125:279

    Article  Google Scholar 

  13. Zhang Z, Berg A, Levanon H, Fessenden RW, Meisel D (2003) On the interactions of free radicals with gold nanoparticles. J Am Chem Soc 125:7959

    Article  Google Scholar 

  14. Kawakami M, Enokiya H, Okamoto T (1985) 197Au NMR study of Au impurities in Fe and FCC Co. J Phys F: Met Phys 15:1613

    Article  Google Scholar 

  15. Tokita M, Haga E (1982) Nuclear magnetic resonance of 197Au in gold metal. J Mol Struct 83:143

    Article  Google Scholar 

  16. Greget R (2011) Propriétés magnétiques de nanoparticules d’or fonctionnalisées. PhD thesis, Université de Strasbourg. Available online at: http://scd-theses.u-strasbg.fr/2404/

  17. Wende H (2004) Rep Prog Phys 67:2105

    Article  Google Scholar 

  18. Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, Gil de Muro I, Suzuki K, Plazaola F, Rojo T (2008) Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8:661

    Article  Google Scholar 

  19. Negishi Y, Tsunoyama H, Suzuki M, Kawamura N, Matsushita MM, Maruyama K, Sugawara T, Yokoyama T, Tsukuda T (2006) X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J Am Chem Soc 128:12034

    Article  Google Scholar 

  20. Garitaonandia JS, Goikolea E, Insausti M, Suzuki M, Kawamura N, Osawa H, Gil del Muro I, Suzuki K, Cashion JD, Gorria C, Plazaola F, Rojo T (2009) Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol capped gold nanoparticles. J Appl Phys 105:07A907

    Article  Google Scholar 

  21. Suzuki M, Kawamura N, Miyagawa H, Garitaonandia JS, Yamamoto Y, Hori H (2012) Measurement of a Pauli and orbital paramagnetic state in bulk gold using x-ray magnetic circular dichroism spectroscopy. Phys Rev Lett 108:047201

    Article  Google Scholar 

  22. Sharma VK, Klingelhofer G, Nishida T (eds) (2013) Mossbauer spectroscopy: applications in chemistry, biology, and nanotechnology. Wiley, Weinheim

    Google Scholar 

  23. Goossens A, Crajé MWJ, van der Kraan AM, Zwijnenburg A, Makkee M, Moulijn JA, Grisel RJH, Nieuwenhuys BE, de Jongh LJ (2002) Characterization of supported gold catalysts with 197 Au Mössbauer effect spectroscopy. Hyperfine Interact 139:59

    Article  Google Scholar 

  24. Pakdel S, Miri M (2012) Faraday rotation and circular dichroism spectra of gold and silver nanoparticle aggregates. Phys Rev B 86:235445

    Article  Google Scholar 

  25. Wysin GM, Chikan V, Young N, Dani RK (2013) Effects of interband transitions on Faraday rotation in metallic nanoparticles. J Phys Condens Matter 25:325302

    Article  Google Scholar 

  26. Hamidi SM, Tehranchi MM (2012) Magneto-optical Faraday rotation in Ce:YIG thin films incorporating gold nanoparticles. J Supercond Nov Magn 25:2713

    Article  Google Scholar 

  27. Wang L, Clavero C, Huba Z, Carroll KJ, Carpenter EE, Gu D, Lukaszew RA (2011) Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles. Nano Lett 11:1237

    Article  Google Scholar 

  28. Mason R (2007) Magnetic circular dichroism spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  29. Pineider F, Campo G, Bonanni V, de Julián Fernández C, Mattei G, Caneschi A, Gatteschi D, Sangregorio C (2013) Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett 13:4785

    Article  Google Scholar 

  30. Sokolov AE, Ovchinnikov SG, Zabluda VN, Kal’sin AM, Zubavichus YV (2013) JETP (Letters) 97:98

    Article  Google Scholar 

  31. Armelles G, Cebollada A, Garcia-Martin A, Gonzalez MU (2013) Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv Opt Mater 1:10

    Article  Google Scholar 

  32. Gréget R, Nealon GL, Vileno B, Turek P, Mény C, Ott F, Derory A, Voirin E, Rivière E, Rogalev A, Wilhelm F, Joly L, Knafo W, Ballon G, Terazzi E, Kappler J-P, Donnio B, Gallani J-L (2012) Magnetic properties of gold nanoparticles: a room-temperature quantum effect. ChemPhysChem 13:3092

    Article  Google Scholar 

  33. Blundell S (2001) Magnetism in condensed matter. Oxford University Press, Oxford, UK

    Google Scholar 

  34. Goikolea E, Garitaonandia JS, Insausti M, Lago J, Gil de Muro I, Salado J, Bermejo FJ, Schmool D (2008) Evidence of intrinsic ferromagnetic behavior of thiol capped Au nanoparticles based on μSR results. J Non Cryst Solids 354:5210

    Article  Google Scholar 

  35. Chatterji T (ed) (2005) Neutron scattering from magnetic materials. Elsevier Science, Burlington

    Google Scholar 

  36. de la Venta J, Bouzas V, Pucci A, Laguna-Marco MA, Haskel D, te Velthuis SGE, Hoffmann A, Lal J, Bleuel M, Ruggeri G, de Julián Fernández C, García MA (2009) X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles. J Nanosci Nanotechnol 9:6434

    Article  Google Scholar 

  37. For an application to individual nanoparticles, see for instance Rastei MV, Meckenstock R, Bucher JP (2005) Nanoscale hysteresis loop of individual Co dots by field-dependent magnetic force microscopy. Appl Phys Lett 87: 222505

    Google Scholar 

  38. Rugar D, Budakian R, Mamin HJ, Chui BW (2004) Single spin detection by magnetic resonance force microscopy. Nature 430:329

    Article  Google Scholar 

  39. Rastei MV, Abes M, Bucher JP, Dinia A, Pierron-Bohnes V (2006) Field-dependent of a magnetic force microscopy tip probed by means of high coercive nanomagnets. J Appl Phys 99:084316

    Article  Google Scholar 

  40. Carl A, Lohau J, Kirsch S, Wassermann EF (2001) Magnetization reversal and coercivity of magnetic force microscopy tips. J Appl Phys 89:6099

    Article  Google Scholar 

  41. Rastei MV (2006) Assembly of controlled-size Co nanoparticles on surfaces and their local characterisation by means of field-dependent magnetic force microscopy and scanning tunnelling spectroscopy. PhD thesis, University of Strasbourg

    Google Scholar 

  42. Rastei MV, Bucher JP (2006) Spin polarized tunnelling investigation of nanometre Co clusters by means of a Ni bulk tip. J Phys Condens Matter 18:L619

    Article  Google Scholar 

  43. Rastei MV, Heinrich B, Limot L, Ignatiev PA, Stepanyuk VS, Bruno P, Bucher JP (2007) Size-dependent surface states of strained cobalt nanoislands on Cu(111). Phys Rev Lett 99:246102

    Article  Google Scholar 

  44. Barke I, Hövel H (2003) Confined Shockley surface states on the (111) facets of gold clusters. Phys Rev Lett 90:166801

    Article  Google Scholar 

  45. Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R (2009) Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc 131:2490

    Article  Google Scholar 

  46. For quantum dots see: Stomp RP Dissipative and electrostatic force spectroscopy of InAs quantum dots by non-contact atomic force microscopy. PhD thesis, McGill University, Montréal

    Google Scholar 

  47. Krishnan R, Hahn MA, Yu Z, Silcox J, Fauchet PM, Krauss TD (2004) Polarization surface-charge density of single semiconductor quantum rods. Phys Rev Lett 92:216803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gallani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donnio, B., Gallani, J.L., Rastei, M.V. (2017). Characterization of Magnetism in Gold Nanoparticles. In: Kumar, C. (eds) Magnetic Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52780-1_6

Download citation

Publish with us

Policies and ethics