Skip to main content

Magnetic Nanoparticles Used as Contrast Agents in MRI: Relaxometric Characterisation

  • Chapter
  • First Online:
Magnetic Characterization Techniques for Nanomaterials

Abstract

Magnetic resonance imaging (MRI) has developed at an exponential rate over the last decades, and the development of contrast agents to enhance the visualization of organs has followed the same trend. Meanwhile, magnetic nanoparticles that generate either “positive” or “negative” contrast in MRI have become one of the most important biomedical applications of nanotechnology. Indeed, superparamagnetic iron oxide nanoparticles, as negative contrast agents for T 2/T 2 *-weighted imaging, have found numerous applications in preclinical and clinical MRI (cell labeling, vascular contrast, lymph node imaging, liver contrast). In addition to this, paramagnetic and antiferromagnetic nanoparticles based on the elements Gd3+ and Mn2+ have mainly been exploited in vascular procedures and targeted imaging, for their capacity to enhance the MR signal of blood and of molecular signatures of endovascular disease. They are commonly referred to as “positive” contrast agents for T 1-weighted imaging.

The present chapter is an introduction to the fundamental principles of nanoparticle-based MRI contrast agents. It addresses the main considerations guiding the relaxometric characterization of aqueous suspensions of magnetic nanoparticles, based on the elements iron, manganese, and gadolinium (Fe, Mn, Gd). The relaxivity of MRI contrast agents depends on their nanoparticulate structure, on their magnetic properties, on the distance between water molecules and their surface, and on the kinetics and rotational rate of the compound in biological fluids and in tissues. Among the main parameters guiding the relaxation time of water protons in the vicinity of contrast agents, figure the number of water molecules bound to the contrast agent, the size of the nanocrystals, the total hydrodynamic diameter of nanoparticles, their rotational correlation time, and the exchange rate between the water and the nanoparticle surface.

The general magnetic and relaxometric characteristics of the major classes of nanoparticles used as MRI contrast agents will be reviewed. Examples of nuclear magnetic relaxation dispersion profiles (NMRD), revealing the relaxometric potential of magnetic particles at increasing magnetic field strengths, are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stark DD, Bradley WG (1999) Magnetic resonance imaging, 3rd edn. C.V.Mosby, St-Louis, p 44

    Google Scholar 

  2. Bushberg JT (2012) The essential physics of medical imaging. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Hashemi RH, Bradley WG, Lisanti CJ (2010) Ovid Technologies Inc. MRI the basics. Lippincott Williams & Wilkins, Philadelphia, p ix, 385 p

    Google Scholar 

  4. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    Article  Google Scholar 

  5. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  Google Scholar 

  6. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  Google Scholar 

  7. Merbach AS, Helm L,Tόth E (2013) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Hoboken, p 1 texte électronique (514 p)

    Google Scholar 

  8. Faucher L, Gossuin Y, Hocq A, Fortin MA (2011) Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 22:295103

    Article  Google Scholar 

  9. Faucher L, Tremblay M, Lagueux J, Gossuin Y, Fortin MA (2012) Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces 4:4506–4515

    Article  Google Scholar 

  10. Letourneau M, Tremblay M, Faucher L, Rojas D, Chevallier P, Gossuin Y, Lagueux J, Fortin MA (2012) MnO-labeled cells: positive contrast enhancement in MRI. J Phys Chem B 116:13228–13238

    Article  Google Scholar 

  11. Naccache R, Chevallier P, Lagueux J, Gossuin Y, Laurent S, Vander Elst L, Chilian C, Capobianco JA, Fortin MA (2013) High relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging. Adv Healthc Mater 2:1478–1488

    Article  Google Scholar 

  12. Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084

    Article  Google Scholar 

  13. Na HB, Hyeon T (2009) Nanostructured T1 MRI contrast agents. J Mater Chem 19:6267–6273

    Article  Google Scholar 

  14. Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T-1 MR1 contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T-1 MR images. ACS Nano 3:3663–3669

    Article  Google Scholar 

  15. Faucher L, Guay-Bégin AA, Lagueux J, Côté MF, Petitclerc E, Fortin MA (2011) Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol Imaging 6:209–218

    Google Scholar 

  16. Grobner T, Prischl FC (2007) Gadolinium and nephrogenic systemic fibrosis. Kidney Int 72:260–264

    Article  Google Scholar 

  17. Penfield JG, Reilly RF Jr (2007) What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 3:654–668

    Article  Google Scholar 

  18. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148

    Article  Google Scholar 

  19. Engström M, Klasson A, Pedersen H, Vahlberg C, Käll PO, Uvdal K (2006) High proton relaxivity for gadolinium oxide nanoparticles. MAGMA 19:180–186

    Article  Google Scholar 

  20. Ahren M, Selegard L, Klasson A, Soderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engström M, Käll PO, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir 26:5753–5762

    Article  Google Scholar 

  21. Zhou J, Yu MX, Sun Y, Zhang XZ, Zhu XJ, Wu ZH, Wu DM, Li FY (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32:1148–1156

    Google Scholar 

  22. Cheung ENM, Alvares RDA, Oakden W, Chaudhary R, Hill ML, Pichaandi J, Mo GCH, Yip C, Macdonald PM, Stanisz GJ, van Veggel FCJM, Prosser RS (2010) Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem Mater 22:4728–4739

    Article  Google Scholar 

  23. Chen GY, Ohulchanskyy TY, Law WC, Agren H, Prasad PN (2011) Monodisperse NaYbF4: Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 3:2003–2008

    Article  Google Scholar 

  24. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 46:5397–5401

    Article  Google Scholar 

  25. Schladt TD, Schneider K, Shukoor MI, Natalio F, Bauer H, Tahir MN, Weber S, Schreiber LM, Schroder HC, Muller WEG, Tremel W (2010) Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy. J Mater Chem 20:8297–8304

    Article  Google Scholar 

  26. Simon GH, Von Vopelius-Feldt J, Fu Y, Schlegel J, Pinotek G, Wendland MF, Chen MH, Daldrup-Link HE (2006) Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis: a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Invest Radiol 41:45–51

    Article  Google Scholar 

  27. Koretsky AP, Silva AC (2004) Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 17:527–531

    Article  Google Scholar 

  28. Lee JH, Koretsky AP (2004) Manganese enhanced magnetic resonance imaging. Curr Pharm Biotechnol 5:529–537

    Article  Google Scholar 

  29. Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130

    Article  Google Scholar 

  30. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  Google Scholar 

  31. Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:299–310

    Article  Google Scholar 

  32. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  33. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173

    Article  Google Scholar 

  34. Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomed 2:609–622

    Google Scholar 

  35. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  Google Scholar 

  36. Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330–338

    Article  Google Scholar 

  37. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  38. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315–6343

    Article  Google Scholar 

  39. Rui H, Xing R, Xu Z, Hou Y, Goo S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742

    Article  Google Scholar 

  40. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem 46:1222–1244

    Article  Google Scholar 

  41. Jolivet JP, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 10:481–487

    Google Scholar 

  42. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  43. Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9

    Article  Google Scholar 

  44. Wormuth K (2001) Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci 241:366–377

    Article  Google Scholar 

  45. Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 16:3489–3496

    Article  Google Scholar 

  46. Wan S, Huang J, Yan H, Liu K (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303

    Article  Google Scholar 

  47. Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270

    Article  Google Scholar 

  48. Giri J, Guha Thakurta S, Bellare J, Kumar Nigam A, Bahadur D (2005) Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. J Magn Magn Mater 293:62–68

    Article  Google Scholar 

  49. Sun YK, Ma M, Zhang Y, Gu N (2004) Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf A Physicochem Eng Asp 245:15–19

    Article  Google Scholar 

  50. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  51. De Cuyper M, Joniau M (1988) Magnetoliposomes. Formation and structural characterization. Eur Biophys J 15:311–319

    Article  Google Scholar 

  52. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32–33:198–205

    Article  Google Scholar 

  53. Tzitzios VK, Petridis D, Zafiropoulou I, Hadjipanayis G, Niarchos D (2005) Synthesis and characterization of L10 FePt nanoparticles from Pt-Fe3O4 core-shell nanoparticles. J Magn Magn Mater 294:e95–e98

    Article  Google Scholar 

  54. Sra AK, Ewers TD, Schaak RE (2005) Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem Mater 17:758–766

    Article  Google Scholar 

  55. Joseyphus RJ, Kodama D, Matsumoto T, Sato Y, Jeyadevan B, Tohji K (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310:2393–2395

    Article  Google Scholar 

  56. Hu F, MacRenaris KW, Waters EA, Liang T, Schultz-Sikma EA, Eckermann AL, Meade TJ (2009) Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging. J Phys Chem C 113:20855–20860

    Article  Google Scholar 

  57. Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Dujardin C, Brenier A, Zhang W, Tillement O, Bernstein E, Perriat P (2003) Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J Lumin 102:445–450

    Article  Google Scholar 

  58. Söderlind F, Pedersen H, Petoral RM, Käll PO, Uvdal K (2005) Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J Colloid Interf Sci 288:140–148

    Article  Google Scholar 

  59. Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2477–2481. doi:10.1002/ejic.200900173

  60. Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater 21:717–723

    Google Scholar 

  61. Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19:2924–2929

    Article  Google Scholar 

  62. Wong HT, Vetrone F, Naccache R, Chan HLW, Hao JH, Capobianco JA (2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem 21:16589–16596

    Google Scholar 

  63. Morales MA, Skomski R, Fritz S, Shelburne G, Shield JE, Yin M, O’Brien S, Leslie-Pelecky DL (2007) Surface anisotropy and magnetic freezing of MnO nanoparticles. Phys Rev B 75:134423

    Google Scholar 

  64. Bertin A, Michou-Gallani AI, Gallani JL, Felder-Flesch D (2010) In vitro neurotoxicity of magnetic resonance imaging (MRI) contrast agents: influence of the molecular structure and paramagnetic ion. Toxicol In Vitro 24:1386–1394

    Article  Google Scholar 

  65. Bertin A, Steibel J, Michou-Gallani AI, Gallani JL, Felder-Flesch D (2009) Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies. Bioconjug Chem 20:760–767

    Article  Google Scholar 

  66. Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109:3879–3885

    Article  Google Scholar 

  67. Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging – preclinical in vivo characterization. Invest Radiol 37:167–177

    Article  Google Scholar 

  68. Liu C, Huang PM (1999) Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions. Soil Sci Soc Am J 63:65–72

    Article  Google Scholar 

  69. Daou TJ, PourroyG, Greneche JM, Bertin A, Felder-Flesch D, Begin-Colin S (2009) Water soluble dendronized iron oxide nanoparticles. Dalton Trans 23:4442–4449. doi:10.1039/b823187g

  70. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    Article  Google Scholar 

  71. McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 4:301–307

    Article  Google Scholar 

  72. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  Google Scholar 

  73. Paul KG, Frigo TB, Groman JY, Groman EV (2004) Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjug Chem 15:394–401

    Article  Google Scholar 

  74. Tiefenauer LX, Tschirky A, Kühne G, Andres RY (1996) In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14:391–402

    Article  Google Scholar 

  75. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  76. Papisov MI, Bogdanov A Jr, Schaffer B, Nossiff N, Shen T, Weissleder R, Brady TJ (1993) Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution. J Magn Magn Mater 122:383–386

    Article  Google Scholar 

  77. Fortin MA, Petoral RM, Söderlind F, Klasson A, Engström M, Veres T, Käll PO, Uvdal K (2007) Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18:395501 (395501–395509)

    Article  Google Scholar 

  78. Faure AC, Dufort S, Josserand V, Perriat P, Coll JL, Roux S, Tillement O (2009) Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5:2565–2575

    Article  Google Scholar 

  79. Shi ZL, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T-1 contrast agent for stem cell labeling. Contrast Media Mol Imaging 5:105–111

    Google Scholar 

  80. Klasson A, Ahren M, Hällquist E, Rosén A, Käll PO, Uvdal K, Engström M (2008) Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol Imaging 3:106–111

    Article  Google Scholar 

  81. Faucher L, Tremblay M, Gossuin Y, Rojas D, Chevallier P, Lacroix S, Fortin M-A (2011) Ultra-small nanoclusters of GdOx: a new, efficient contrast agent for in vivo cell tracking studies in T1-w. MRI. In: WMI Society (ed) World Molecular Imaging Congress, San Diego

    Google Scholar 

  82. Guay-Begin AA, Chevallier P, Faucher L, Turgeon S, Fortin MA (2011) Surface modification of gadolinium oxide thin films and nanoparticles using polyethylene glycol-phosphate. Langmuir ACS J Surf Colloid. doi:10.1021/la202780x

    Google Scholar 

  83. Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S, Felder-Flesch D (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573

    Article  Google Scholar 

  84. Chevallier P, Walter A, Garofalo A, Veksler I, Lagueux J, Bégin-Colin S, Felder-Flesch D, Fortin M-A (2014) Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging. J Mater Chem B 2:1779–1790

    Google Scholar 

  85. Banci L, Bertini L, Luchinat C (1991) Nuclear and electron relaxation. The magnetic nucleus-unpaired electron coupling in solution. In: Magnetic Resonance in Chemistry; Special issue: NMR in bioorganic chemistry. VCH, Ed, p S154

    Google Scholar 

  86. Small WC, DeSimone-Macchi D, Parker JR, Sukerkar A, Hahn PF, Rubin DL, Zelch JV, Kuhlman JE, Outwater EK, Weinreb JC, Brown JJ, De Lange EE, Woodward PJ, Arildsen R, Foster GS, Runge VM, Aisen AM, Muroff LR, Thoeni RF, Parisky YR, Tanenbaum LN, Totterman S, Herfkens RJ, Knudsen J, Laster RE Jr, Duerinckx A, Stillman AE, Spritzer CE, Saini S, Rofsky NM, Bernardino ME (1999) A multisite phase iii study of the safety and efficacy of a new manganese chloride-based gastrointestinal contrast agent for MRI of the abdomen and pelvis. J Magn Reson Imaging 10:15–24

    Article  Google Scholar 

  87. Rocklage SM, Cacheris WP, Quay SC, Ekkehardt Hahn F, Raymond KN (1989) Manganese(II) N, N′-dipyridoxylethylenediamine-N, N′-diacetate 5,5′-bis(phosphate). Synthesis and characterization of a paramagnetic chelate for magnetic resonance imaging enhancement. Inorg Chem 28:477–485

    Article  Google Scholar 

  88. O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley, New York

    Google Scholar 

  89. Gossuin Y, Hocq A, Vuong QL, Disch S, Hermann RP, Gillis P (2008) Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles. Nanotechnology 19. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.134423

  90. Muller RN, Vander Elst L, Roch A, Peters JA, Csajbok E, Gillis P, Gossuin Y (2006) Relaxation by metal-containing nanosystems. Adv Inorg Chem 57:239–292

    Google Scholar 

  91. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence, and uses. VCH, Weinheim/New York

    Google Scholar 

  92. Neel L (1948) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys Paris 3:137–198

    Google Scholar 

  93. Crangle J (1991) Solid-state magnetism. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  94. Dormann JL (1981) Superparamagnetism phenomenon. Rev Phys Appl 16:275–301

    Article  Google Scholar 

  95. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  Google Scholar 

  96. Chantrell RW, Lyberatos A, El-Hilo M, O’Grady K (1994) Models of slow relaxation in particulate and thin film materials (invited). J Appl Phys 76:6407–6412

    Article  Google Scholar 

  97. Dormann JL, Spinu L, Tronc E, Jolivet JP, Lucari F, D’Orazio F, Fiorani D (1998) Effect of interparticle interactions on the dynamical properties of γ-Fe2O3 nanoparticles. J Magn Magn Mater 183:L255–L260

    Article  Google Scholar 

  98. Dormann JL, D’Orazio F, Lucari F, Tronc E, Prené P, Jolivet JP, Fiorani D, Cherkaoui R, Noguès M (1996) Thermal variation of the relaxation time of the magnetic moment of γ-Fe2O3 nanoparticles with interparticle interactions of various strengths. Phys Rev B Condens Matter 53:14291–14297

    Article  Google Scholar 

  99. Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120S

    Google Scholar 

  100. Bloembergen NJ, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679

    Article  Google Scholar 

  101. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565

    Article  Google Scholar 

  102. Solomon I, Bloembergen NJ (1956) Nuclear magnetic interactions in the HF molecule. J Chem Phys 25:261

    Article  Google Scholar 

  103. Bloembergen NJ (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27:573

    Article  Google Scholar 

  104. Bloembergen NJ, Morgan NO (1961) Proton relaxation times in paramagnetic solutions. J Chem Phys 34:842

    Article  Google Scholar 

  105. Burtea C, Laurent S, Vander Elst L, Muller RN (2008) Contrast agents: magnetic resonance. Handb Exp Pharmacol 135–165. doi:10.1007/978-3-540-72718-7_7

  106. Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted F-19 nanoparticles. Magn Reson Med 52:1255–1262

    Article  Google Scholar 

  107. Luz Z, Meiboom S (1964) Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere. J Chem Phys 40:2686–2692

    Article  Google Scholar 

  108. Swift TJ, Connick RE (1962) NMR-Relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J Chem Phys 37:307–320

    Article  Google Scholar 

  109. Noack F (1986) NMR field-cycling spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 18:171–276

    Article  Google Scholar 

  110. Merbach AE, Tôth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester/New York

    Google Scholar 

  111. Freed JH (1978) Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J Chem Phys 68:4034–4037

    Article  Google Scholar 

  112. Bulte JM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993) Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 3:641–648

    Article  Google Scholar 

  113. Hwang JS, Rao KVS, Freed JH (1976) An electron spin resonance study of the pressure dependence of ordering and spin relaxation in a liquid crystalline solvent. J Phys Chem 80:1490–1501

    Article  Google Scholar 

  114. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (vol 108, pg 2064, 2008). Chem Rev 110:2574–2574

    Google Scholar 

  115. Vuong QL, Berret JF, Fresnais J, Gossuin Y, Sandre O (2012) A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv Healthc Mater 1:502–512

    Article  Google Scholar 

  116. Gossuin Y, Roch A, Muller RN, Gillis P (2002) An evaluation of the contributions of diffusion and exchange in relaxation enhancement by MRI contrast agents. J Magn Reson 158:36–42

    Article  Google Scholar 

  117. Laprise-Pelletier M, Bouchoucha M, Lagueux J, Chevallier P, Lecomte R, Gossuin Y, Kleitz F, Fortin MA (2015) Metal chelate grafting at the surface of mesoporous silica nanoparticles (MSNs): physico-chemical and biomedical imaging assessment. J Mater Chem B 3:748–758

    Article  Google Scholar 

  118. Koenig SH, Baglin C, Brown Iii RD, Brewer CF (1984) Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes. Magn Reson Med 1:496–501

    Google Scholar 

  119. Koenig SH, Baglin CM, Brown Iii RD (1985) Magnetic field dependence of solvent proton relaxation in aqueous solutions of Fe3+ complexes. Magn Reson Med 2:283–288

    Google Scholar 

  120. Muller RN, Vallet P, Maton F, Roch A, Goudemant JF, Vander Elst L, Gillis P, Peto S, Moiny F, Van Haverbeke Y (1990) Recent developments in design, characterization, and understanding of MRI and MRS contrast media. Invest Radiol 25:S34–S36

    Article  Google Scholar 

  121. Ouakssim A, Fastrez S, Roch A, Laurent S, Gossuin Y, Piérart C, Vander Elst L, Muller RN (2004) Control of the synthesis of magnetic fluids by relaxometry and magnetometry. J Magn Magn Mater 272–276:e1711–e1713

    Article  Google Scholar 

  122. Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110:5403–5411

    Article  Google Scholar 

  123. Li W, Tutton S, Vu AT, Pierchala L, Li BSY, Lewis JM, Prasad PV, Edelman RR (2005) First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 21:46–52

    Article  Google Scholar 

  124. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674

    Article  Google Scholar 

  125. Reimer P, Marx C, Rummeny EJ, Müller M, Lentschig M, Balzer T, Dietl KH, Sulkowski U, Berns T, Shamsi K, Peters PE (1997) SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J Magn Reson Imaging 7:945–949

    Article  Google Scholar 

  126. Modo MMJJ, Bulte JWM (2007) Molecular and cellular MR imaging. CRC Press, Boca Raton

    Book  Google Scholar 

  127. Kellar KE, Fujii DK, Gunther WHH, Briley-Sæbø K, Bjørnerud A, Spiller M, Koenig SH (2000) NC 100150 injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 11:488–494

    Article  Google Scholar 

  128. Daldrup-Link HE, Kaiser A, Helbich T, Werner M, Bjørnerud A, Link TM, Rummeny EJ (2003) Macromolecular contrast medium (feruglose) versus small molecular contrast medium (gadopentetate) enhanced magnetic resonance imaging: differentiation of benign and malignant breast lesions. Acad Radiol 10:1237–1246

    Article  Google Scholar 

  129. Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 39:394–405

    Article  Google Scholar 

  130. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631

    Article  Google Scholar 

  131. Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RT (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7:500–512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-André Fortin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fortin, MA. (2017). Magnetic Nanoparticles Used as Contrast Agents in MRI: Relaxometric Characterisation. In: Kumar, C. (eds) Magnetic Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52780-1_15

Download citation

Publish with us

Policies and ethics